

Estimates of global erosional sediment, carbon, nitrogen and phosphorus fluxes

Zeli Tan¹, L. Ruby Leung¹, Hong-Yi Li², Qing Zhu³

¹Pacific Northwest National Laboratory, Richland, WA

²University of Houston, Houston, TX

³Lawrence Berkeley National Laboratory, Berkeley, CA

Methods

 Realistic representation of soil erosion in E3SM will greatly improve the understanding of global carbon and nutrient cycles in the context of environmental changes.

Schematic of the ELM-Erosion model (Tan et al., 2018, 2020)

Benchmark estimates

Widely-used soil erosion and sediment yield estimates are for ELM-Erosion calibration, including a global RUSLE 25-km soil erosion estimate for 2000s (Borrelli et al., 2017), and WBMsed longterm semi-pristine sediment yield estimate on the HydroBASINS Lev04 basins (Cohen et al., 2013).

Simulation protocol

- Simulation period: from 1991 to 2010
- Forcing data: 0.5-deg 3-hourly GSWP3 data
- Simulation resolution: 0.5-deg
- Land BGC scheme: ECA
- LULCC scheme: The Land Use Harmonized version 2 (LUH2) transient dataset from 1850 to 2015

Model calibration

 Calibrated ELM-Erosion reproduces spatial variability of global soil erosion

Model calibration (cont.)

Calibrated soil erosion is insufficient to support riverine sediment yield

E3SM Energy Exascale Earth System Model

Modeled sediment loads

 Low correlation between the temporal variability of rainfall and sediment loads at the continental scale

Energy Exascale Earth System Model

Soil erosion exacerbates nutrient limitation

 Soil erosion reduces phosphorus availability in low latitudes

Energy Exascale Earth System Model

Summary

- Channel erosion is a dominant sediment production pathway for many large rivers in the world.
- Correlation of water cycle and soil erosion should be considered in the context of spatial heterogeneity.
- Soil erosion has a large negative impact on phosphorus availability in low latitudes with rough topography.

