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Background

Motivation:
I Bioenergy crops cultivation is projected to increase in the future due to their potential for mitigating

climate change.

I Agriculture can alter the climate through its impact on biogeophysical and biogeochemical

properties of the terrestrial ecosystem and therefore should be adequately represented in Earth

System Models.

I Although, the Energy Exascale Earth System Model (E3SM) Land Model (ELM) includes

representation of select cereal crops, bioenergy crops are not yet included.

Objective:
I Expand ELM’s crop model to include bioenergy crops - Miscanthus and switchgrass.

I Perform global sensitivity analysis to identify and optimize the bioenergy crop parameters.

Challenges:
I Large number of parameters control the plant growth and associated carbon fluxes.

Approach

Sensitivity analysis:
Uncertainty Quantification Toolkit (UQTk) was used for optimizing eighteen crop parameters. The

steps for performing global sensitivity analysis were:

I Eighteen different crop parameters associated with carbon nitrogen allocation, crop phenology, and

photosynthetic capacity and their approximate ranges were identified for the sensitivity analysis.

I A sample file was created containing a large sample of randomly distributed parameters within their

specified range.

I Offline Land Model Testbed (OLMT) used for submitting, managing, and post processing a large

ensemble of ELM model runs (2000).

I Surrogate models developed for ELM simulations (forward modeling) (Figure 1).

I Sobol indices (variance based decomposition) estimated for parameter selection (Figure 2).

I Observational data utilized for optimizing parameters (inverse modeling) (Figure 3).

Future work
I Modify the Miscanthus crop model to better represent the observed longer growing season.

I Develop surrogates models for daily outputs from ELM to achieve better calibration of the model

parameters.

Results

0 250 500 750 1000 1250 1500

Model (GPP)

0

250

500

750

1000

1250

1500

P
o
ly
n
o
m
ia
l
S
u
rr
o
g
a
te

RMSE

training points 22.72

RRMSE

training points 0.03

validation points 24.37

validation points 0.03

training points

validation points

y=x

100 200 300 400 500

Model (NPP)

0

100

200

300

400

500

P
o
ly
n
o
m
ia
l
S
u
rr
o
g
a
te

RMSE

training points 9.86

RRMSE

training points 0.03

validation points 11.95

validation points 0.04

training points

validation points

y=x

−30 −15 0 15 30

Model (NEE)

−30

−15

0

15

30

P
o
ly
n
o
m
ia
l
S
u
rr
o
g
a
te

RMSE

training points 2.04

RRMSE

training points 0.17

validation points 2.05

validation points 0.17

training points

validation points

y=x

0.0 0.6 1.2 1.8 2.4 3.0 3.6

Model (TLAI)

0.0

0.6

1.2

1.8

2.4

3.0

3.6

P
o
ly
n
o
m
ia
l
S
u
rr
o
g
a
te

RMSE

training points 0.08

RRMSE

training points 0.07

validation points 0.09

validation points 0.08

training points

validation points

y=x

Figure 1: ELM outputs vs. surrogate model outputs for the 10-year average annual GPP, NPP, NEE, and
TLAI. The surrogate model is fairly accurately representing the ELM outputs.
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Figure 2: Total-effect Sobol sensitivity indices of the eighteen parameters for the eleven output
quantities of interest. ELM output variables are most sensitive to 1) fleafi - leaf allocation parameter
used in CNAllocation 2) leafcn - leaf C:N 3) slattop - specific leaf area (SLA) at top of canopy that impacts
water uptake and transpiration.
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Figure 3: Simulated (grey and blue lines) and observed (red lines) daily GPP (gC m−2 day−1) and NEE
(gC m−2 day−1) for Miscanthus. Grey lines represent the simulated values for the 2000 ensemble members
while the thick blue line is average simulated value across the ensemble. Light red lines represent daily
observed values from 2009-2018 while the thick red line is the daily average across the ten years. The
observational data was collected at the University of Illinois Energy Farm from 2008-2018.
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