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Model of interest: E3SM Land Model (ELM)

Single Column mode
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Ensemble-intensive studies require
preconstructed surrogate models

Design conditions Input parameters
(e.g. space/time) (uncertain)
Surrogates are necessary for N\ ¥V

* Global sensitivity analysis f(ZC, )\) ~ fs (.CC, )\)

* Uncertainty propagation .
« Model calibration/tuning Never analyze the ensemble directly:

« Optimal experimental design build a surrogate first
... otherwise called proxy, metamodel,
emulator, response surface, supervised ML

Work with the model as a black-box (non-intrusive):

- create an ensemble of simulations with varying/perturbing \
and learn the relationship y = f(x; \)
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Temporal nature of the model
requires special surrogate types

Key Idea #1:

Use Recurrent Neural Networks (RNN), such as
Long Short Term Memory (LSTM)
to capture temporal dependencies

Key Idea #2:

Use physics-informed connections to build
tree-based neural-network architecture for
more efficient training and higher accuracy
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I/O structure of single column ELM

e Day of year

0 AWy *  Min/Max Temp
parameters , e Solar radiation
* Usually uncertain p \ * Water availability

initialize
model
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LSTM architecture handcrafted according to

Vanilla LSTM:
One network per Qol

O o P @ Physics-informed LSTM:
_m_m”—mjﬂ]— accounts for Qol connections
Forcingsl ‘L

Parameters

* Long short term memory (LSTM),
a variant of Recurrent Neural Network (RNN)
* Much better than conventional
polynomial regression or multilayer NN
e But the winneris ....
physics-informed architecture
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Model and training details

Initial work on seELM, simplified py version for UQ analysis

Represents land biogeochemistry (carbon cycle processes)

47 parameters (subset of ELM) — prior distributions from literature

Can run point to global-scale simulations

* Trained on simulations at various FLUXNET sites
 Dropout Regularization
* 500 training samples, 500 validation samples

 Three hidden layers, each 150 units
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Physics-informed LSTM neural network
accurately resolves time evolution

Loss function of vanilla LSTM and :
e tin o e e Comparison of SELM and NNs
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LSTM NNs approximates the sELM behaviour
with respect to perturbations in 47 parameters, with a fraction of the cost
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Global Sensitivity Analysis (GSA)
enables parameter selection

... otherwise called Sobol indices, variance-based decomposition

Attribute fractions of output variance to input parameters

Param 1 Param 2 Param 4 Param 5
GSA comparison for PCE, MLP,LSTM RNN and Tree-LSTM RNN GSA comparison for PCE, MLP, LSTM RNN and Tree-LSTM RNN
EEm PCE B PCE
. MLP . MLP
0.251 BN [STM RNN 0.25 1 BN [STM RNN
Tree LSTM RNN Tree LSTM RNN
0.20 A 0.20 A
& 0.15 & 0.15
0.10 - 0.10 -
0.05 0.05 4
0.00

5
Parameter Parameter

3 U.S. DEPARTMENT OF
E SM Energy Exascale \(
Earth System Model 9 EN ERG

i 0



Summary

* Physics-informed NN architecture helps
build a time-resolved accurate surrogate

* The cost of surrogate evaluation -
is a fraction of the land model evaluation cost

e Surrogate is employed for
uncertainty propagation and global sensitivity analysis

* Surrogate will be employed for parameter calibration/tuning

 Marry temporal surrogate with a spatially resolved surrogate
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