Development of Regionally Refined Ocean/Sea Ice Meshes for E3SMv2

Mathew Maltrud¹

Xylar Asay-Davis¹

Mark Petersen¹

Andrew Roberts¹

Luke Van Roekel¹

Milena Veneziani¹

Jon Wolfe¹

Chris Golaz²

¹Los Alamos National Laboratory, ²Lawrence Livermore National Laboratory

MPAS Framework based on unstructured meshes

- We have tested ~10 different ocean/sea-ice meshes with refined resolution in the vicinity of North America and Greenland
- All have a background global mesh similar to the E3SMv1 low resolution mesh that varies from 30km at the equator to 60km at mid latitudes, then back to 30km near the poles
- Grid scale is smoothly transitioned between background and refined regions
- Horizontal mixing parameterizations are linearly grid scale dependent, including GM eddy advection and Redi isopycnal mixing which transition from full strength at scales > 30km to zero for scales < 20km
- Better resolution of bathymetry and coastlines such as in the Canadian Archipelago, Florida-Bahamas Strait, and Bering Strait

Highlight 3 top candidates

8 km refinement

- Very realistic Gulf Stream separation and Extension
- Strongly eddying in refined regions
- Grid refinement cuts through Subpolar gyre, modifying path of current
- 850k core-hours/model-century (CompyMcNodeFace)

Grid scale (km)

Sea Surface Height (m)

12 km refinement

- Less realistic Gulf Stream separation and Extension
- Moderate eddying in refined regions
- Grid refinement cuts through Subpolar gyre, modifying path of current
- 450k core-hours/model-century (CompyMcNodeFace)

Grid scale (km)

Sea Surface Height (m)

Highlight 3 top candidates (continued)

14 km refinement

- Less realistic Gulf Stream separation and Extension
- Moderate eddying in refined regions
- Grid refinement boundary is south of the Gulf Stream Extension and Subpolar gyre so doesn't artificially modify current path
- 330k core-hours/model-century (CompyMcNodeFace)

Grid scale (km)

Sea Surface Height (m)

How do we decide which candidate to use, or even create a new one?

- Reduction of important biases in E3SMv1
- Better resolution of important physical processes and circulation features
- Computational cost

Labrador Sea Ice Bias

- In E3SMv1, there was too extensive sea ice in the Labrador Sea during the winter
- As a result, there was a strong fresh water bias (due to excess melt) and associated low temperature bias

- The 3 candidates all reduced or eliminated this bias
- Better resolution of Greenland Current and eddy transport within the Subpolar gyre are responsible

Atlantic Meridional Overturning Circulation (AMOC)

 Changes in water mass properties in the North Atlantic affect deep convection which can manifest as a change in strength of AMOC

Refined grid cases result in more realistic mean AMOC

. 30 year average

Structure of ocean circulation at 26.5°N

 Higher resolution bathymetry improves the currents that make up the Gulf Stream and Subtropical gyre

30 year average of meridional velocity (m/s) at 26.5 $^{\circ}N$

Decision criteria and Caveats

- The most crucial feature is placing grid refinement boundary south of the Gulf Stream Extension and Subpolar gyre (14km refinement case)
- 8km refinement is too expensive, and would be even more costly after moving refinement boundary further south
- 12km refinement cost is borderline in original form, but too expensive after shifting the refinement boundary to the south
- Add refinement throughout the Arctic with nominal increase in cost
- Also used mixed layer depth, ocean heat content anomalies, and other metrics in the decision-making process
- As a result, we have chosen the 14km refinement as a the production version
- Caveat: the ocean, sea ice, and atmosphere models have evolved significantly since these runs were performed and results may vary
 - Bug fixes in MPAS-Ocean turned out to have significant effects
 - Still tuning in both ocean and atmosphere