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Motivation:
• E3SM Software and Algorithms NGD goals:

– Effectively exploit DOE’s leadership class HPC capabilities, improving model trust-worthiness

• Code Evolution:
– Bit-for-bit reproducing changes

• E.g. Adding a new compset, new output variable

– Non-b4b changes
• Different climate (statistics) expected

– E.g. New parameterizations modules, new tunings

• Same climate (statistics) expected

– E.g. code porting, refactoring, GPU kernel, etc.

• Goal: Test the null hypothesis that climate simulation remains statistically 
equivalent after unintended non-b4b changes.
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Error growth in climate systems:

• Truncated Floating Point arithmetic: 
– Round-off errors
– Non-associative: 

• (-1 + 1) + 2-53 ≠ -1 + (1 + 2-53)

– Optimizations, hybrid architectures, code 
refactoring, etc. can change the order of operations.

• Climate models:
– Chaotic, non-linear system

• Round-off differences grow quickly

• Problem: identify systematic bugs from innocuous error 
growth in non-BFB reproducible environment.

Lorenz attractor 
(Source:en.wikipedia.org/wiki/Chaos_theory)
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Chaotic nature of the climate system: L1 Norm 
of temperature at 850mb as compared to a 
control run for a 100 EAM runs differing only in 
initial conditions perturbed by machine 
precision levels.
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ML  for Two Sample Testing Using Ensembles

Ensemble A

Ensemble B

• Approach:
• Evaluate statistics of the perturbed 

ensemble vs. control ensemble 
after propagation of errors from 
machine precision differences in
initial conditions.

• Short (2yr for MPAS-O) ensembles

• Problem statement: Multivariate two 
sample equality of distribution testing 
for:

• High dimensions
• Low sample sizes

• Use ML approaches for two sample 
equality of distribution tests.
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MPAS-O Reproducibility tests: Approach

• Generate control and perturbed ensembles at QU240 resolution (7153 cells)

• Evaluate 5 prognostic variables (Baker et al. 2016)
– SSH, T, U, V, Salinity 

– Annual average of year 2, as error growth converges.

• Ocean variability is spatially very heterogenous (as compared to the 
atmosphere):

– So, we evaluate at each grid point.

• Conduct fine-grained null hypothesis tests at each grid point: 
– Two sample KS test: Popular non-parametric test 

– Cucconi test: Better power, rank based non-parametric test. 

– Permutation testing

Growth of Round-off differences in MPAS-O

Larger Null Hypothesis: Control and perturbed ensembles belong to the same population

Growth of machine precision differences in oQU240 MPAS-O and ensemble spread: L1 Norm (sum of 
absolute difference at each grid point, log-scale) of SST of each of the 100 ensemble members with 
round off differences in initial conditions compared to a reference run for the control (kappa = 1800, 
red lines) and modified (kappa = 600, blue lines) ensembles. 
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MPAS-O Reproducibility Tests: Approach

– For single test, null hypothesis is rejected if:

• Test statistic p-value (p) is less than a critical value, a (say 0.05): p <= a

• For M tests, aM would be rejected for true null hypotheses just by chance

– For multiple tests, FDR constrains critical value (aFDR) for local hypothesis tests (H0):

– Global Null Hypothesis Test (G0): Reject if pj <= aFDR at any grid point.

– Robust for correlated tests:

• e.g. spatial correlations (Wilks et a. 2006, Renard et al. 2008). 

• Used in testing field significance

Confidential manuscript submitted to JGR-Atmospheres

ate to study extremes over those data points. We find that a few grid (⇡5%) points exhibit sig-172

nificant auto-correlation at the 5% level in the observational data over mainland Europe and173

US. But, a larger fraction of points over Greenland and North America exhibit significant auto-174

correlation. However, not all of these lead to a failure of the KS goodness of fit test. Less than175

1% of data points show significant auto-correlation in monthly maxima of precipitation ex-176

tremes in the winter season for both model ensembles.177

To capture the influence of NAO on extremes, the base GEV model is modified to in-178

clude the NAO index as a covariate in the location parameter term as µ = µ0+↵.NAO(t),179

where NAO(t) is the NAO index for the corresponding winter month, t, and ↵ represents the180

linear rate of change of the location parameter with the NAO index. The parameters of the GEV(µ0+181

↵.NAO(t),�, ⇠) model, including ↵, are again computed by the maximum log-likelihood method182

to fit a GEV distribution. We call this GEV model the NAO GEV model, hereafter. Here, we183

do not investigate the non-linear impacts of NAO on the location parameter as or its impacts184

on the scale and shape parameters, which will be the subject of future studies. Theoretically,185

the distribution of GEV parameters is approximately multivariate normal with a variance-covariance186

matrix that can be computed at the maximum likelihood estimates [Coles, 2001].187

To establish the significance of adding a NAO covariate to the base model (i.e to ensure188

that the NAO GEV model is significantly different than the BASE GEV model), we use the189

likelihood-ratio test. The likelihood-ratio test is based on the deviance statistic - difference in190

the maximized log-likelihoods between the NAO GEV model and the base model [Coles, 2001]191

- at each grid point. If the p-value of the deviance statistic is less than a prescribed critical value192

(↵), the null hypothesis that the NAO GEV model and the base GEV model are statistically193

similar is rejected. When a single hypothesis is being tested, the critical value is the given sig-194

nificance level of testing (↵, say 0.05). But, when multiple hypotheses (say M ) are being tested195

simultaneously (one for each grid point, here), M↵ hypotheses will be erroneously rejected196

just by chance even if all the null hypotheses were true [e.g. Wilks, 2006]. To appropriately197

control for falsely rejecting such true null hypotheses, we use the false discovery rate (FDR)198

approach [Renard et al., 2008; Wilks, 2006; Ventura et al., 2004] to compute a constrained crit-199

ical value, ↵FDR, for a given global significance level, ↵, as follows:200

↵FDR = max
j=1,2,...,M

{pj : pj  ↵(j/M)} (2)

–7–

• Correct for simultaneous multiple null hypothesis tests (M grid points)
• False Discovery Rate (FDR) approach (Wilks et al. 2006, Ventura et al. 2004):

pj are sorted p-values of M tests
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FIG. 2. Illustration of the traditional FPR and FDR procedures on
a stylized example, with q 5 a 5 20%. The ordered p-values, p(i),
are plotted against i/n, i 5 1, . . . , n, and are circled and crossed to
indicate that they are rejected by the FPR and FDR procedures, re-
spectively.

TABLE 1. Quantities relevant to traditional FPR and new FDR procedures. The information that is known is indicated in bold. FPP, FNP,
FDP, and FNDP indicate, respectively, the observed false positive, negative, discovery and nondiscovery proportions, and FPR, FNR, FDR,
FNDR indicate the corresponding expected proportions, which we refer to as rates; for example, E(FDP) 5 FDR.

TRUTH

Decision

Maintain H0 Reject H0 Row totals
Quantities relevant to
FPR procedures

H0 n 2 nFPH0

No. correctly maintained

nFP

No. of false positives

nH0
No. of true H0

FPP 5
nFP
nH0

FPR5 a

HA nFN

No. of false negatives

n 2 nFNHA

No. correctly rejected

nHA
No. of false H0

FNP 5
nFN
nHA

FNR 5 ??
Column totals naccept

No. of maintained H0

nreject
No. of rejected H0

n (# of tests)

Quantities relevant to FDR FNDP 5
nFN
naccept

FNDR # a
(see section 4)

FDP 5
nFP
nreject

FDR # q

p-value that lies below the (0, q) line, indicated on Fig.
2 by an arrow.
Figure 2 also shows that, although the FDR rejection

rule is complicated, effectively all p-values below a cer-
tain threshold are rejected, since the p-values are plotted
in ascending order. This yields two remarks. First, this
explains why the three sets of rejected null hypotheses
in Fig. 1 were nested subsets: the implicit FDR threshold
was between the significance levels of the two FPR
procedures, a 5 5% and the Bonferroni-corrected a 5
n21 3 5%.
Second, this suggests that the outcome of the FDR

procedure could have been obtained with a traditional
FPR procedure with some cleverly chosen a. So why
bother with an FDR testing procedure? The answer,
which we develop further in the next section, is that
FDR procedures control false rejections in a meaningful
way.

b. Controlling mistakes

When we reject or fail to reject a particular H0, we
may either make the correct decision or make one of
two mistakes: reject when H0 is in fact true or fail to
reject when H0 is in fact false. These mistakes are com-
monly referred to as false positive and false negative
detections and also as type I and type II errors. We
denote by nFP and nFN the numbers of such mistakes out
of the n tests (see Table 1). Since the truth is unknown,
we use testing procedures that control these errors. Both
FPR and FDR procedures control the number of false
positive detections nFP in different ways, but neither (nor
any testing procedure we know) controls the number of
false negative detections. It is easy to see why; once a
or q is chosen, the decisions about the hypotheses, as
carried out in Fig. 2, are determined; there is no room
left to control the number of false negatives.
For a traditional FPR procedure, the choice of a de-

termines the properties of the test; a is the probability
of rejecting any particular H0 by mistake, which means
that on average, a% of the n locations for which H0H0
is true will be found significant by mistake. We report
this in Table 1 as

FPP 5 n /n , FPR 5 E(FPP) 5 a,FP H0 (3)

where FPP is the observed false positive proportion,
and E stands for expectation. The FPP/FPR notation is
consistent with standard statistical terminology, where
the expectation of an observed ‘‘proportion’’ is usually
referred to as a ‘‘rate.’’ Equation (3) justifies our calling
a the FPR.
What (3) means is that the number nFP of false pos-

itives that a traditional FPR procedure allows is pro-
portional to the unknown number n of true null hy-H0
potheses. So, for example, if most or all locations have
n true, this test will yield a large number of falseH0
positive detections, as we will later illustrate in Fig. 3.

Ventura et al. 2004

Type I error rate (False Positive Rate): Probability of falsely rejecting a null hypothesis
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MPAS-O Reproducibility Tests

• Bootstrap with Control Ensemble (150 ensemble members):

• Randomly draw two samples with N=M=30 members
• Conduct KS test and Cucconi test for alpha = 0.05
• Repeat 500 times

• KS test:
• 95th percentile of the no. of cells rejecting the local null hypothesis (FDR) = 0
• 95th percentile of the no. of cells rejecting the local null hypothesis = 426

• Cucconi test:
• 95th percentile of the no. of cells rejecting the local null hypothesis (FDR) = 15
• 95th percentile of the no. of cells rejecting the local null hypothesis = 643

Evaluation of Type I error rate
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MPAS-O Reproducibility Tests: Test Case

Growth of machine precision differences in oQU240 MPAS-O and ensemble spread: L1 
Norm (sum of absolute difference at each grid point, log-scale) of SST of each of the 100 
ensemble members with round off differences in initial conditions compared to a reference 
run for the control (kappa = 1800, red lines) and modified (kappa = 600, blue lines) 
ensembles. 

Known Climate Changing Case: GM Kappa = 600 (Default = 1800)
30 member ensembles for test and control case

Both KS and Cucconi tests 
reject the null hypothesis that 
the two ensembles belong to 
the same population at the 
0.05 significance level.
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MPAS-O Reproducibility Tests: Power Analysis

• Turn a tuning parameter knob incrementally: 
• Gent and McWilliams kappa (600 to 1800):

• Ensembles: 
• 100 members for each case
• Initial condition at each grid box, j, of each 

ensemble member perturbed as:
• T’j = (1+x’)Tj, x’ is random number 

transformed to range from (-10-14, 10-14)

• Power Analysis:
• Randomly pick N=30 (=40, 50, 60) members from 

the control and perturbed sets
• Conduct test
• Repeat (500 times)

• Result:
• Both tests can catch small differences in GM 

Kappa with high confidence. For example, the 
tests with 30 member ensembles can detect 
changes in GM Kappa from 1800 to 1799.

Type II error rate: Probability of accepting a false 
null hypothesis
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Power Analysis of KS Testing Framework

N= 30 N = 40 N = 50 N = 60
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Power Analysis of Cucconi Testing Framework

N= 30 N = 40 N = 50 N = 60

Power Analysis. Probability of correctly rejecting a false null hypothesis 
(Power) of the test in detecting changes to a MPAS-O tuning parameter 
from a control case (GM kappa = 1800) for different ensemble sizes (N).

Controlled 
changes to 
GM kappa 
tuning 
parameter 
in MPAS-O
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Summary:
• Use short ensembles for model verification using ML techniques as E3SM adapts for Exascale

• Developed a ML based multivariate testing framework for climate reproducibility for MPAS-O using short 
ensembles:

– To be ported to EVV – the reproducibility testing framework for EAM.

• Test Cases:
• Correctly detects known climate changing perturbations by tuning parameter changes
• Working with developers of a new implementation of the barotropic solver in MPAS-O to ensure 

climate reproducibility.

• Power Analysis:
– Both the KS test and the Cucconi testing frameworks can catch small changes to tuning parameters 

with high confidence, with increasing power with increasing number of ensemble members
– Provides a framework to developers to evaluate impact of non-b4b changes.
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