

A Barotropic Mode Solver for MPAS-Ocean using ForTrilinos

Hyun-Gyu Kang¹, Katherine J. Evans¹, Philip W. Jones², Mark R. Petersen², Andrew G. Salinger³, Raymond S. Tuminaro⁴, and Andrey Prokopenko¹

¹Oak Ridge National Laboratory ²Los Alamos National Laboratory ³Sandia National Laboratories (NM) ⁴Sandia National Laboratories (CA)

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Background

- **Split-explicit subcycling scheme** (current scheme in MPAS-O)
 - 3D baroclinic mode can be stepped with a long time step size. ($\approx 2 \text{ m s}^{-1}$ of wave speed)
 - 2D barotropic mode should be stepped with a short time step size. (\approx 200 m s⁻¹ of wave speed)

• Split semi-implicit method

 2D barotropic and 3D baroclinic modes can be stepped with long time step size together, since the implicit method is unconditionally stable.

Background

Split semi-implicit method

- Reducing the number of iteration as small as possible using a good preconditioner

Background

- ForTrilinos
 - Object-oriented Fortran interfaces to Trilinos C++ packages
 - Modelers using modern Fortran are able to provide their codes the capability to use solvers and other capabilities on exascale machines via a straightforward infrastructure that accesses Trilinos.
 - An open-source software library
 - The new implementation using SWIG code generation
 - Developed and maintained by:
 - Seth Johnson (ORNL) and Andrey Prokopenko (ORNL) (<u>https://fortrilinos.readthedocs.io/en/latest/</u>)
 - A variety of choice of linear & nonlinear solvers and preconditioners
 - Users can use several combinations for a solver and a preconditioner to find the best set for their model.

Research purpose

In the present study, we implement the semi-implicit solver for MPAS-O using ForTrilinos as a competitor
of the current explicit-subcycling scheme.

Design of a semi-implicit barotropic mode solver

Semi-implicit formulation

- Crank-Nicolson (CN) method
 - Second-order in time, unconditionally stable
 - Backward time stepping for the 1st time step only to damp spurious oscillations from CN method

Iterative solver

- Preconditioned s-step CG provided by Belos linear solver framework in ForTrilinos
 - More scalable algorithm compared to classic CG
 - Solver tolerance: $10^{-8} \rightarrow$ carefully chosen by using energy conservation error

Preconditioner

- Algebraic multigrid preconditioner provided by MueLu multigrid solver framework

Vational Laboratory

ForTrilinos interface in MPAS-O

Call-tree structure of the ForTrilinos in MPAS-O

CAK RIDGE National Laboratory

6

call solver_handle%solve(B, X) !; FORTRILINOS_CHECK_IERR()

Results

• Strong scaling results

- RRS30to10 test case (1,444,561 cells; one day integration)

RRS18to6 test case

_

Results

• Bottlenecks in ForTrilinos solver (timer comparison: ForTrilinos vs Hand-rolled solver)

- Test case: EC60to30 (total 235,160 cells) for one-day integration
- MPI_BARRIER is used to synchronize MPI processors before entering the barotropic mode solver.
- Global reduction is a main bottleneck for both solvers.
- For the ForTrilinos solver, global reduction and vector updating processes are slower than we expected.

Summary and discussion

- A new semi-implicit barotropic mode solver has been implemented in MPAS-O using ForTrilinos.
 - As a competitor to an existing explicit-subcycling scheme, the semi-implicit barotropic mode solver has been implemented in MPAS-O.
 - ForTrilinos which is a Fortran interface to Trilinos C++ math library is introduced for an implicit solver.
 - After careful investigations, we choose the s-step CG linear solver and the algebraic multigrid preconditioner as a linear solver and a preconditioner, respectively.
 - The ForTrilinos semi-implicit solver scales well and faster than the existing scheme until 200 cells per core, while it is slower than the hand-rolled semi-implicit solver.
 - Thanks to the hand-rolled solver, some bottlenecks in the ForTrilinos solver are identified, which will be investigated more thoroughly.
 - Function call overheads in Trilinos?
 - Additional global communications in somewhere?

