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Nonhydrostatic HOMME (theta-l nonhydrostatic dycore)
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[Terms in frames]are the ones solved ‘implicitly’, since they are responsible for
acoustic waves in vertical direction and have a very restrictive CFL.

We use Implicit-Explicit Runge-Kutta timestepping methods to integrate in time.



Motivation: A simple tool to evaluate timestepping schemes for
nonhydrostatic HOMME

* Nonhydrostatic HOMME needs new IMplicit-EXplicit (IMEX) Runge-Kutta methods to integrate acoustic waves in vertical
* We develop a simple offline tool to investigate stability, dispersion, and dissipation of IMEX methods
* The tool is also used to find the optimal IMEX schemes

Previously, offline tools for IMEX were based on We made a tool based on system of normal modes,
an idealized setup, a 2D acoustic system: also idealized, but with more complexity:
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Complexity of the new tool

Previous 2D acoustic system: New system of normal modes:

* Contains only 2 acoustic modes and 1 Contains full set of atmospheric modes:

artificial gravity mode 2 acoustic, 2 gravity, 1 Rossby

* Linearized around constant pressure * Linearized around steady hydrostatic profile with const T and variable
profile pressure

e Has only pressure gradient term and * Allows various realistic boundary conditions at the top of the model

pressure equation, thermodynamics * Contains Coriolis terms
Allows any set of thermodynamic variables

as in dynamical cores is not supported

implicit terms



The new tool is more selective
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New framework shows that the method is largely unstable.



Use the new tool to develop IMEX schemes
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Stability is not the only property that varies ....
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Dispersion and dissipation for all types of waves, example

Besides stability, we can recover numerical dispersion and dissipation for all 3 types of waves for a particular IMEX method.
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Dispersion and dissipation, a variety of properties
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How much does dispersion and dissipation matter?

Reasonable question: Don’t we want to completely dissipate acoustic waves?

Our answer: Probably not. All waves, including acoustic and gravity waves, need to be represented accurately
to accurately restore hydrostatic balance (Thuburn 2012).
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