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Overview

Computational efficiency: Solution accuracy for given computational resources.
Two new methods increase E3SM Atmosphere Model (EAM) computational efficiency:

» Semi-Lagrangian tracer transport.
> Separate physics parameterizations grid with physics-dynamics-grid remap.

Property preserving, to mimic continuum equations:

> Conserve mass.
> Limit extrema: no new nodal value, element-neighborhood-local global extrema.
> Tracer consistent: A constant mixing ratio remains constant.

High order: Order of accuracy (OOA) is at least two.
> In general, strict property preservation limits formal OOA to two.

Speed up EAM by roughly 2 x roughly independent of architecture and problem
configuration.

Work seamlessly in the Regionally Refined Mesh (RRM) configuration.
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SL Transport: Overview

o In EAMv1, Eulerian flux-form tracer transport is the dominant dynamical core cost.

o In EAMV2, switch to a semi-Lagrangian method to take very long time steps per
communication round.
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SL Transport: Algorithms

o Semi-Lagrangian = very long time steps.
@ Remap form = communication volume is roughly independent of time step.

o Interpolation = extremely efficient, both in computations and data volume of discrete
domain of dependence.

o Use a communication-efficient density reconstructor' (CEDR) for mass conservation,
limiting extrema, and tracer consistency.
> Exactly one all-reduce(-like) communication round.
> Clear and practical necessary and sufficient conditions for feasibility.
> Clear and practical bounds on mass modifications.

o Implemented using an upwind communication pattern to communicate no more than what
is needed.

@ End-to-end on GPU; currently integrating into HOMMEXX-NH.

'A. M. Bradley, P. A. Bosler, O. Guba, M. A. Taylor, G. A. Barnett, Communication-efficient property preservation in
tracer transport, SIAM J. Sci. Comput., 41(3), 2019, doi:10.1137/18M1165414.
Software: github.com/E3SM-Project/COMPOSE.
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https://doi.org/10.1137/18M1165414
github.com/E3SM-Project/COMPOSE

SL Transport: Accuracy’

Transport error with tuned parameters Transport error with operational parameters
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o Nondivergent flow test case.

@ Compare (left) tuned parameters and (right) operational parameters.
o SL transport is uniformly more accurate.

2

“HOMME tuned” data are from O. Guba, et al, Optimization-based limiters for the spectral element method, JCP 2014. “CAM operational” data are from P. H.
Lauritzen, et al. "Geoscientific Model Development A standard test case suite for two-dimensional linear transport on the sphere: results from a collection of state-of-the-art
schemes.” GMD 7(1) 2013.
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SL Transport: Dissipation

@ FEulerian flux-form method requires hyperviscosity for stability.
@ SL transport does not.
@ But optionally can apply hyperviscosity.

e Example: Specific humidity at approximately 500 hPa, on day 30 in DCMIP 2016 moist
baroclinic instability test.

Eulerian flux-form SL, no hyperviscosity SL with hyperviscosity
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SL Transport: Dycore-only performance

@ pregx dycore is >2.1x faster on KNL at 1350 nodes Performance as a function of number of tracers

24 KNL nodes, 64 ranks/node, 2 threads/rank
(StrOng-SCaling llmlt) Wlth SL transport 24 HSW nodes, 32 ranks/node, 1 thread/rank

6,144 elements, 72 levels
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Physgrid Remap: Overview

@ Previously: Physics column at each dynamics grid GLL point.

@ Many ways to define dycore’s effective resolution. All imply assigning a physics column
to every GLL point is inefficient.

o New: Physics column at each subcell of a spectral element.

“pg2” has 4/9 as many columns as in EAMv1, better matching the effective resolution.
> >2x greater computational efficiency: approximately the same answer for half the cost.

L (] L) p
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Physgrid Remap: Algorithms

Linear operator requirements: Dynamics — physics:

@ Mass conserving. o Simply average the GLL density over the
physics subcell.

e Call this A7,

@ Satisfies requirements 1, 2.

© Remap is local to the element.
Q Ifd = AP7p, then AY™7d = p.
Q Ifp = A“7?d, andd = T¢ ~‘d’ with

ng = ny,, then A" p = d. Physics — dynamics:
Ratig I @ AY7? and requirements 2 and 4 uniquely
@ Requirement 2 means there is no specify A7,
communication round beyond what is o Satisfies requirement 3.
strictly necessary. Nonlinear operator:
@ Requirements 3 and 4 specify limited @ Mass-conserving local limiter.

forms of idempotence; these help to
minimize dissipation from remap.

Communication:

. @ None in dynamics — physics remap.
@ Requirement 4 assures the remap operator . . .
@ Physics — dynamics requires:

has order of accuracy ny = n, because an . ) -
. g > Limiter: min/max communication round
n,r-basis-representable field is recovered from HOMME

exactly. > Final DSS to restore continuity.
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Physgrid Remap: Accuracy

Convergence test of
high-order, property-preserving,
physics-dynamics-grid remap

—e— np4-pg2
=e- np4-pg3

—
o
=
@ Remap a test function from dynamics grid @
to physics grid and then back. g
. -+
@ Compare error under grid refinement. o N\
2 ~ b
—
o~
o i\\\\\
o N,
—_ 1 A
l.% N \\
N
L ]

log resolution

3 U.S. DEPARTMENT OF
E S M Energy Exascale
iy s AW ENERGY

Andrew M. B SNL' SL Transport and Physgrid



Together: Accuracy
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Together: Accuracy
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Max timers for

Together: Performance

@ CPL:RUN_LOOP (total time-stepping time) and

@ CAM_run3 (total dycore time-stepping time).

EAM low-res on 68 Compy nodes

EAM RRM on 113 Cori KNL nodes

e o 9
S o ©

Normalized wallclock time
s o
n o

EAMv1

E 3 S M Energy Exascale
Earth System Model

Andrew M. Bradley (SNL)

Dynamics and
_— Transport

w7% Rest of EAM

e e o
N o o

o
o

Normalized wallclock time
o o o o
S 2888

o
=

o

0.
EAMv2 EAMvV1

SL Transport and Physgrid

Dynamics and
_— Transport

777 Rest of EAM

EAMv2

U.S. DEPARTMENT OF

ENERGY



Current and future work: Ocean passive tracers for BGC

@ Remap-form, property-preserving, cell-integrated, semi-Lagrangian passive tracer
transport method® for MPAS-Ocean.
@ 2D correctness and convergence tests on a global MPAS grid sequence:
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3P. A. Bosler, A. M. Bradley, M. A. Taylor, Conservative multimoment transport along characteristics for discontinuous
Galerkin methods, SIAM J. Sci. Comput., 41(4), 2019, doi:10.1137/18M1165943.
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Current and future work: Ultra-accurate atm. tracers

@ Islet subpackage of COMPOSE will extend current interpolation formula up to 9th-order
accuracy.

@ Interpolate velocity data from dycore.
@ Remap tendencies between grids.

@ Increase accuracy by up to >100x.

Cosine Bells Slotted Cylinders

0 = T — -0.5 T
5 = :
s 8 1 - °
o —12 |
o -6
¢ -16 np 4 1
S —20| == np6 -8
O —24} === npll -10
= —28F % * QLT -12
~ —32| ® @ No limiter
- —36| — Interpolated v ‘\ | 14
—40L - g E><alctvI Lo \?_ -16

Y S e 6‘7\79(9

n, n, n,

3 U.S. DEPARTMENT OF
E S M Energy Exascale
iy s AW ENERGY

Andrew M. 5 SL Transport and Physgrid



Summary

o EAMV2 is roughly 2x faster than EAMv1 roughly independent of architecture and
problem configuration.

@ NGD NH Atm. (aka SCREAM) and E3SM-MMF are also using these methods.

@ We have developed and are developing a set of high-order, property-preserving remap
tools for

> tracer transport in the atmosphere (v2)
> physics-dynamics-grid remap in the atmosphere (v2)
> passive tracer transport in the ocean for BGC (target: v3)

@ Library: github.com/E3SM-Project/COMPOSE
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