
Debugging E3SM
Atmosphere Model
A new tool inspired by
Perturbation growth test
method

Balwinder Singh, Phil Rasch and Hui Wan

“The most secure code is the code that is never written” – Colin Percival

Outline
• Classes of model errors
• Reasons E3SM like codes are harder to debug
• Commonly used debugging tools
• EAM’s Inbuilt debugging tools
• Test cases

Typical Workflow

Configure Compile Run Analyze
Model output

Compset, grid etc. ./case.build ./case.submit E3SM Diags

Classes of Model Errors
ØConfigure issues:

ØCompile time errors:

Di
ffi

cu
lty

 L
ev

el

Classes of Model Errors
ØRuntime errors:

ØWrong answers!

Di
ffi

cu
lty

 L
ev

el

Why E3SM is harder to debug?

Parallel nature of the code

Size of the code

Different coding styles
*E3SM branched off from CESM

Why E3SM is harder to debug?

Lots of dependencies

Scattered error log files

Configurable in many ways

“It works on my machine” -- Anonymous J

Good old print statements

Debuggers/Compilers

Opensource Debuggers

Common Debugging Tools

“If you lie to a compiler, it will get its revenge” -- Henry Spencer

Inbuilt Debugging Tools

Physics Debug Codes:

Ø Allows to focus on one grid point (lat, lon) on the globe

PERGRO Driven debugging:

Ø Allows to track how a physical process impacts state variables
Ø Uses Physics Debug Codes to find the offending line of code

(lat, lon)

Physics Debug Tools

One ColumnOne Chunk

Ve
rt

ic
al

 le
ve

ls

icol = phys_debug_col(chnk_id)
if(icol> 0)write(*,*) ‘taux’, taux(icol)

ØWhy this tool is very critical?
§ Parallel code – Chunks and columns
§ Indices of a variable can not be trusted to stay
the same

ØAllows us to identify a latitude and longitude
combination in a model run using chunk

ØNamelist changes:

Ø Inside EAM source code:

Ø Proposed Enhancements:
§ Vertical level and Constituent number

Dynamics

Deep
Convection

CLUBB

Microphysics
-1 Microphysics

-2

Aerosol
processes

Radiation

Vertical
DiffusionBegin Time

Step

Time Stepping
Loop

Store output

Land Model

Ø Inspired from perturbation growth test
Ø Stores model output after every physical

process
Ø Helps in tracking which state variable is

affected by which physical process

ØProposed enhancements:
§ Ability to add/remove tracked

state variables at runtime
(Namelist)

§ Ability to track each sub-step
of processes taking sub-steps
(e.g. CLUBB and MG2)

PERGRO Test Driven Tool
pergro_test_active = .true.

Ø Scenario: Modified code to add an enhancement but it broke the model’s BFB restart
capability

Ø First check all the obvious places
§ Carefully review new code modifications
§ Do we need new variables in the restart file?
§ Use a debugger/print statements to review the code

Ø Last resort – Isolate and understand the code causing non-BFB behavior

Scenario – A Broken Restart Test

ØWays to expedite debugging:
§ Reproduce the problem:
• On a coarsest possible resolution
• With the least number of time steps (ideally one-time step)
• Switch off compiler optimization
• Use all compiler debugging options

§ Use your prior experience with E3SM

How to use these tools?

Pergro Isolate the physical process causing model’s state variables to differ

Script
Find model’s state variable with max difference
Find latitude and longitude of the max difference

Phys
Debug

Isolate line of code causing this difference

§ Unexpected Non-BFB model results:
§ Broken model restart
§ Perceived BFB code modifications causing answers to change
§ Non-BFB results due to broken threading

§ Wrong answers!
§ Value of a variable going out of range or beyond expectation
§ Bugs in the computing environment

Common Test Cases

Ø Compiler bug (Compy, Intel 19.0.3):

Ø MMF and phys_loadbalance

Ø Non-BFB radiation diagnostic code:
§ Processes invoked with different “states”
§ Identified missing processes

Ø MAM with added inactive mode
§ Identified several answer changing places in code
§ Found a bug in ways sea-salt indices are stored and used in the code

Some Recent Debugging Exercises
do k = 2, nz-1

k_wp3 = 2*k - 1
k_wp2 = 2*k

rhs(k_wp3) = rhs(k_wp3) + invrs_dt
rhs(k_wp2) = rhs(k_wp2) + invrs_dt
rhs(k_wp2) = rhs(k_wp2) - 0.1D0

enddo

This Photo by Unknown Author is licensed under CC BY

https://ohiostate.pressbooks.pub/choosingsources/chapter/purpose-of-research-questions/
https://creativecommons.org/licenses/by/3.0/

