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Motivation:
• E3SM: Software and Algorithms (PI: Andy Salinger, SNL): 

– Effectively exploit DOE’s leadership class HPC capabilities, improving model trust-worthiness

• Code Evolution:
– Bit-for-bit reproducing changes

• E.g. Adding a new compset, new output variable

– Non-b4b changes
• Different climate (statistics) expected

– E.g. New parameterizations modules, new tunings

• Same climate (statistics) expected

– E.g. code porting, refactoring, GPU kernel, etc.

• Goal: Test the null hypothesis that climate simulation is similar for unintended non-
b4b changes.
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Motivation
• Truncated Floating Point 

arithmetic:
– Round-off differences
– Non-associative: 

• (-1 + 1) + 2-53 ≠ -1 + (1 + 2-53)

– Optimizations, hybrid 
architectures

• Climate models:
– Chaotic, non-linear system

• Round-off differences grow 
quickly

• Problem: identify systematic bugs
in non-BFB reproducible 
environment.

Lorenz attractor 
(Source:en.wikipedia.org/wiki/Chaos_theory)
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FIG. 1. Global RMS temperature di↵erence produced by CCM2 run on a CRAY from a small

initial perturbation taken from a rectangular distribution bounded by ±1.0 ⇥ 10�14
K (solid line)

and global RMS temperature di↵erence between IBM and CRAY versions of CCM2 (dashed line).

model for the quadrature of the spectral transform method; and �p is the average of
the local vertical pressure di↵erence from the two cases at the grid point:

�p = [(�p)a + (�p)b] /2 .

The two values (�p)a and (�p)b are not necessarily the same, given the hybrid (�–p)
vertical coordinate adopted in CCM2. The discrete formula for the RMS is consistent
with the model discrete approximations for global integrals. The reader is referred to
[5] for further details of those approximations and of the vertical hybrid coordinate.
In this paper, we illustrate the growth of di↵erences using the temperature field. The
wind field components show the same characteristics.

Three phases can be seen in the di↵erence growth illustrated by the solid line in
Figure 1. The first phase occurs over the first seven days and is dominated primarily
by very rapid growth. During this period, the di↵erence grows, on average, one
and one-half orders of magnitude per day. The second phase shows a slower growth
starting from RMS values around 10�3 K, with a doubling time of around two days,
and slowing near the end of the period. The third phase shows no growth and occurs
after day 33, when the fields from the two models are uncorrelated with each other.
The second and third phases are more typical of the growth characteristics expected
in predictability error growth [4], [9].

4. Growth of di↵erence in ported version. In this section we consider the
growth of the solution di↵erence for an example of the ported code and illustrate
that some changes from the operational configuration may be required to satisfy
Condition 1 for a successful port. The dashed line in Figure 1 shows the growth of
the RMS temperature di↵erence from two integrations of the CCM2 code run on two
di↵erent computers, a CRAY Y-MP and an IBM RS6000. The original and ported
versions are both based on the standard production code. The initial di↵erence of 3.8⇥
10�10 K is larger than would be expected from simple rounding di↵erences in the last
bits of the floating point representation. Since the computer with the least accuracy
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Evolution of Temperature (Courtesy: 
Matt Norman)
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E3SM Testing

• E3SM Testing Suite (bfb):
– * APT (auto promotion test (default length))

* CME (compare mct and esmf interfaces (10 days))
* ERB (branch/exact restart test)
* ERH (hybrid/exact restart test)
* ERI (hybrid/branch/exact restart test, default 3+19/10+9/5+4 days)
* ERS (exact restart from startup, default 6 days + 5 days)
* ERT (exact restart from startup, default 2 month + 1 month (ERS with
info dbug = 1))
* ICP (cice performance test)
* LAR (long term archive test)
* NCK (multi-instance validation vs single instance (default length))
* NOC (multi-instance validation for single instance ocean (default length))
* OCP (pop performance test)
* P4A (production branch test b40.1850.track1.1deg.006 year 301)
* PEA (single pe bfb test (default length))
* PEM (pes counts mpi bfb test (seq tests; default length))
* PET (openmp bfb test (seq tests; default length))
* PFS (performance test setup)
* PRS (pes counts hybrid (open-MP/MPI) restart bfb test from startup,
default 6 days + 5 days)
* SBN (smoke build-namelist test (just run preview_namelist and
check_input_data))
* SEQ (sequencing bfb test (10 day seq,conc tests))
* SMS (smoke startup test (default length))
* SSP (smoke CLM spinup test (only valid for CLM compsets with CLM45 and
CN or BGC))

• Non bit for bit changes:
– Convergence test, perturbation growth test and climate reproducibility tests
– Expert opinion, ad-hoc tests

The main thing that distinguishes legacy code from non-legacy code is tests, or rather a lack of tests. –Michael Feathers 
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Short Independent Simulation Ensemble 
T’j = (1+x’)Tj

x’ is uniform random number transformed to range from (-10-14, 10-14)
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Short Independent Simulation Ensembles 
Problem to solve: Multivariate two sample equality of distribution testing for:

High dimension
Low sample size 
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Climate Reproducibility Tests:
Ensemble Based Multivariate ML Approach

• Approach:
– Ensemble vs. ensemble
– Short (1yr) ensembles

• Short Ensembles:
– Quantify natural variability
– Computationally efficient (Mahajan et al. 

2017)

.

Accelerate and add rigor to the verification of E3SM for non-BFB changes
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• Leverage two sample equality of 
distribution tests from the ML community:

– e.g. cross-match test, energy test, 
kernel test

– Distribution-free/non-parametric
– Effective at high dimensions, low 

sample sizes
– Used widely in other fields, e.g. 

genetics, image processing, etc.

.
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Short Independent Simulation Ensembles
• Packing simulations together is economical as compared to a SLR

• Compare a 100 1-yr ensemble vs. a 100-yr long run 

– Poor Weak and Strong Scaling for 100-yr long run – smaller work load and increased MPI communications with increasing core counts

– 100x greater workload per node for 100 member 1-yr ensemble on the same no. of nodes

– Significantly reduced relative MPI and PCI-e overheads for ensembles:

• Better parallel scaling

– Faster throughput for ensembles:

• Large core counts

• Higher priority (capability scale) on leadership class machines (e.g. OLCF, NERSC, etc.)

– Example (atmosphere spectral element 2 degree model):

• Long run (100 years): 1536 elements, 96 nodes, 16 elements per node

• SISE (100 1yr runs): 48 nodes each, 32 elements per node (total nodes: 4800)

• Usage:

– Solution reproducibility tests

– Scientific Applications

Courtesy: David Hall
(https://www.earthsystemcog.org/projects/dcmip-2016/HOMME-NH)
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Short Ensembles: Scientific Utility
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Verma et al. 2019
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Equality of Distribution Tests
• Energy Test (e.g. Szekely and Rizzo, 2004): 

– e-distance metric

– Small values of e indicate same population
– Derive null distribution by resampling

These multivariate two-sample tests of equality of distributions have never been applied to climate mod-669

eling studies and it is not obvious a priori which tests would be most suitable for distinguishing climate670

statistics. We propose to use three popular classes of tests to test the null hypothesis that the baseline and671

the modified model simulation ensembles belong to the same population. We will generate short simulation672

(⇠1 yr) ensembles for both the baseline and the perturbed model. Our tests will use all the standard model673

output variables from the two ensembles. These tests are briefly illustrated for the global annual mean of the674

output variables below:675

• Cross Match Test: Standardized global annual means of all output variables are concatenated into676

a single multivariate vector for each ensemble member. The n baseline and m perturbed multivariate677

vectors are pooled together into a single set of size N = n+m and each vector in the resulting set is678

optimally paired with the vector closest to it, such that the total distance between each pair is mini-679

mized, for some distance metric (e.g. L1-norm, L2-norm, Mahalanobis distance, fractional distance,680

etc.). The cross-match test statistic, T , is defined as the number of pairs with one vector from each of681

the control and perturbed ensembles (cross-match). The probability that T is equal to some specific682

value a1 if the null hypothesis is true is given by:683

P(T = a1) =
2a1(N/2)!�N

n

�
(n�a1

2 )!a1!(m�a1
2 )!

(1)

The distribution T is based on simple combinatorics, so it does not depend on the assumed distribution684

of the baseline or perturbed data vectors (Rosenbaum, 2005). When the baseline and the perturbed685

distributions are similar, cross-matches should occur more frequently. The null hypothesis is rejected686

if T > t for a critical value t computed from Eq. 1 to match a desired significance level.687

• Energy test: The energy test is based on the concept of energy statistics of Székely and Rizzo (2004),688

where they define the test statistic e-distance, e, as:689
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where X1, . . . ,Xn and Y1, . . . ,Ym are the multivariate vectors of the baseline and perturbed ensembles.690

Large values of e correspond to different distributions of the two samples. Here, kA�Bk represents691

some measure of distance between two vectors. The null distribution of e is not distribution-free but a692

permutation test approach provides a distribution-free test: The data vectors are pooled together and693

randomly resampled into the two groups and the e-distance ek is computed for each such permutation,694

k. If all distinct possible permutations are drawn, then the permutation test is exact. The values of e695

from these permutations then describe the null distribution of e. For, a significance level of a, the null696

hypothesis is rejected if e > 100(1�a)% of the permuted estimates of ek.697

• Kernel Test: In a kernel two-sample test, a smooth function (kernel) is fitted to each to the multivariate698

vectors of the two ensembles such that the function values are large for vectors of one ensemble and699

small for the other (Gretton et al., 2006). The test statistic is the distance between the mean of function700

values over the two ensembles, called the Maximum Mean Discrepancy (MMD). If the two ensembles701

belong to the same population then we expect small values of MMD. Functions in the reproducing702

kernel Hilbert space (RKHS) like the Gaussian and the Laplace kernels have favorable properties703

suitable for the kernel test (Gretton et al., 2006). An empirical estimate of the test statistic is given by:704
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Equality of Distribution Tests
• Kernel Test (e.g. Gretton et al. 2006): 

– Maximum mean discrepancy (MMD) metric

– Small values of MMD indicates same population
– Derive null distribution by resampling

MMD =
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where k represents the kernel in its class of functions that maximizes MMD and X1, . . . ,Xn and705

Y1, . . . ,Ym are the multivariate vectors of the baseline and perturbed ensembles. The null distribu-706

tion of MMD has a complex form, but the permutation test approach is routinely applied to establish707

the null distribution of MMD.708

The significance level of these null hypothesis tests determines the false positive (erroneously rejecting709

a true null hypothesis, Type I error) rates. We will conduct a power analysis of these tests using a large710

controlled set of ensembles to empirically determine the optimal sample size required to detect a given711

degree of difference between two ensembles with a given false negative (erroneously accepting a false null712

hypothesis, Type II error) rate.713

Our approach is similar to the approach of Baker et al. (2015) developed by the CESM software en-714

gineering group and included in public releases since CESM version 1.4. They use one-year simulations715

in a principal component based approach to evaluate if global annual means of output variables of a mod-716

ified model simulation belong to the statistical distribution derived from a large baseline ensemble. Baker717

et al. (2015) reduce the multivariate hypothesis test to a set of uncorrelated univariate hypothesis tests. The718

pass/fail criterion of the multivariate hypothesis test is determined empirically as the number of univariate719

hypothesis tests that are allowed to fail at a particular significance level. Principal component analysis re-720

quires that the sample size be larger than the number of variables. Because a typical simulation outputs more721

than a hundred variables, establishing the climate statistics of the baseline model becomes quite expensive.722

Our approach is beneficial over the Baker et al. (2015) approach as the new multivariate tests do not require723

large sample sizes for the baseline model. Being able to use smaller ensemble sizes is particularly useful for724

ACME development, where climate-changing feature changes are frequently introduced. Also, instead of725

conducting several univariate hypothesis tests as in the Baker et al. (2015) approach, we only test one null726

hypothesis (equality of two multivariate sample distributions) with the multivariate tests which are based on727

robust and satisfying theoretical foundations.728

Another issue with the Baker et al. (2015) approach is that in the current form it only works on globally,729

annually-averaged quantities. This prevents identification of differences which show up at smaller spatial730

and temporal scales or in the treatment of climate extremes. We plan to implement our tests not only for731

global means as illustrated above, but also for individual grid points to identify geographic locations where732

model differences occur. An issue with performing statistical tests for each grid cell is that if you apply733

a test at 95% confidence level to 100 independent cells, 5 of them will fail the test due to chance alone.734

Correcting for this is complicated by the fact that GCM grid cells are not independent of each other as735

large and important spatial correlations exist in the climate system at different temporal scales, much like736

the field significance of regression patterns. We plan to test the null hypothesis that the spatial pattern of737

climate variables is similar between the two model variants by using a permutation test. We define a spatial738

pattern test statistic, t, as the number of grid points that fail the multivariate test. We can derive the null739

distribution of t by resampling from the pooled data of n perturbed and m perturbed ensemble members. We740

will randomly resample and put them into n and m sized groups. For each such resampling, i, we will then741

compute ti, i.e. the number of grid points that fail the test, leading to the empirical null distribution. If all742

possible permutations are drawn, then the null distribution is exact for n baseline and m perturbed runs. If743

t > 100(1�a)% of the permuted values ti, for a significance level a for the grid point multivariate test, the744

null hypothesis does not hold.745

We will also test for differences in extremes. Classical non-parametric distance-based tests of equality746

of univariate distributions, e.g. Kolmogrov-Smirnov (KS) test, are not robust for distributions with different747
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Equality of Distribution Tests
• Kolmogorov Smirnov (KS) - Testing 

Framework:
– Null Hypothesis (H0): Two ensembles 

represent the same climate state.

– Use global annual means of standard model 
output variables (158 variables).

– H0: A variable between the two ensembles 
belong to the same distribution.

– Test H0 for each variable using a KS test.

– Test statistic (t): No. of variables that reject 
H0 at a given confidence level (say 95%).

Illustration: KS test

– Test statistic (t): No. of variables that reject 
H0 at a given confidence level (say 95%).

– H0 rejected if t > a, where a is some critical 
number for a significance level (Type I error 
rate).

– a is empirically from an approximate null 
distribution of t derived using resampling 
techniques. 
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Significance Level (Type I Error Rate): Resampling
• Simulations from the two ensembles of size n

and m are pooled together.

• Simulations from the pool are then randomly
assigned to one of two groups of sizes n and m. 

• The t-statistic is then computed for the random 
drawing. 

• Repeat

• If all possible random drawings are made, the 
null distribution of t is exact. 

– We conduct 500 drawings - approximate null 
distribution. 
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Model Verification Using Ensembles:
Known Climate Changing Perturbation
• Model: DOE E3SM v1

• Configuration: Active atmosphere land, prescribed cyclical F2000 SSTs and sea-ice 
distribution (FC5)

• Spatial Resolution: ~500km at the equator (5 degrees), 30 vertical layers

• Machine Configuration: PGI compiler on Titan

• Ensembles: Machine-precision level random perturbations to the initial 3-D temperature field
• 30 member SISE
• T’j = (1+x’)Tj, x’ is random number transformed to range from (-10-14, 10-14)

• Turn a tuning parameter knob: zm_c0_ocn (control case: 0.007, modified: 0.045)
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KS Testing Framework Results

Comparison Test Statistic (t) Critical No. H0 Test

Default vs. perturbed c0_ocn 119 13 Reject

Name Description Ens. Size
Default c0_ocn Default model settings 30
Perturbed c0_ocn Perturbed model parameter 30
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Power Analysis (Type II Error rate)
Type II error rate: Probability of accepting a false null hypothesis

• Turn a tuning parameter knob incrementally: zm_c0_ocn (0.007 to 0.045)

• Ensembles: 
• 100 members for each case
• T’j = (1+x’)Tj, x’ is random number transformed to range from (-10-14, 10-14)

• Power Analysis:
• Randomly pick N=30 (=40, 50, 60) members from the control and perturbed sets
• Conduct test
• Repeat (500 times)
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Power Analysis: KS Testing Framework
Controlled changes to zm_c0_ocn tuning parameter in Deep Convection

Example of Power Analysis. 
Probability of correctly rejecting a 
false null hypothesis (Power) of the 
test in detecting changes to a EAM 
tuning parameter from a control 
case (zm_c0_ocn = 0.0070) for 
different short simulation (1yr) 
ensemble sizes (N).

Mahajan et al. 2019
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Power Analysis
Controlled changes to zm_c0_ocn (= 0.0070, default) tuning parameter 
in Deep ConvectionPASC ’19, June 12–14, 2019, Zurich, Switzerland Mahajan, Evans, Kennedy, Xu, and Norman
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Figure 1: Power Analysis of the three tests for the zm_c0_ocn experiment set (ZM_SET): (a) energy test, (b) kernel test and (c)
KS testing framework. Empirically (random sampling) estimated statistical Power (1� �) - probability of rejecting a false null
hypothesis - of the test at the 95% con�dence level for di�erent ensemble sizes (N = 30, 40, 50, 60). The null hypothesis that
two simulation ensembles are statistically identical is tested for each perturbed zm_c0_ocn case against the zm_c0_ocn = 0.007
case. Figure 1c is reproduced from Mahajan et al. [7].
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Figure 1: Power Analysis of the three tests for the zm_c0_ocn experiment set (ZM_SET): (a) energy test, (b) kernel test and (c)
KS testing framework. Empirically (random sampling) estimated statistical Power (1� �) - probability of rejecting a false null
hypothesis - of the test at the 95% con�dence level for di�erent ensemble sizes (N = 30, 40, 50, 60). The null hypothesis that
two simulation ensembles are statistically identical is tested for each perturbed zm_c0_ocn case against the zm_c0_ocn = 0.007
case. Figure 1c is reproduced from Mahajan et al. [7].
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Figure 1: Power Analysis of the three tests for the zm_c0_ocn experiment set (ZM_SET): (a) energy test, (b) kernel test and (c)
KS testing framework. Empirically (random sampling) estimated statistical Power (1� �) - probability of rejecting a false null
hypothesis - of the test at the 95% con�dence level for di�erent ensemble sizes (N = 30, 40, 50, 60). The null hypothesis that
two simulation ensembles are statistically identical is tested for each perturbed zm_c0_ocn case against the zm_c0_ocn = 0.007
case. Figure 1c is reproduced from Mahajan et al. [7].
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Mahajan et al. 2019
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Power Analysis
Controlled changes to dcs (= 400.0, default) tuning parameter 
in Cloud Microphysics

Energy Test Kernel Test KS Testing Framework
Multivariate Approach to Ensure Stat. Reproducibility of Climate Model Simulations PASC ’19, June 12–14, 2019, Zurich, Switzerland
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Figure 2: Power Analysis of the three tests for the dcs experiment set (MICRO_SET): (a) energy test, (b) kernel test and (c) KS
testing framework. Empirically (random sampling) estimated statistical Power (1 � �) - probability of rejecting a false null
hypothesis - of the test at the 95% con�dence level for di�erent ensemble sizes (N = 30, 40, 50, 60). The null hypothesis that
two simulation ensembles are statistically identical is tested for each perturbed dcs case against the dcs = 400.0 case.

Multivariate Approach to Ensure Stat. Reproducibility of Climate Model Simulations PASC ’19, June 12–14, 2019, Zurich, Switzerland

0

0.2

0.4

0.6

0.8

1

1.2

397 395 392 390 385 375 350 325 300 200 100

Po
w

er

dcs

Power Analysis of Energy Test

N= 30 N = 40 N = 50 N = 60

0

0.2

0.4

0.6

0.8

1

1.2

397 395 392 390 385 375 350 325 300 200 100

Po
w

er

dcs

Power Analysis of KS Testing Framework

N= 30 N = 40 N = 50 N = 60

0

0.2

0.4

0.6

0.8

1

1.2

397 395 392 390 385 375 350 325 300 200 100

P
o

w
er

dcs

Power Analysis of Kernel Test

N= 30 N = 40 N = 50 N = 60

a.

b.

c.

Figure 2: Power Analysis of the three tests for the dcs experiment set (MICRO_SET): (a) energy test, (b) kernel test and (c) KS
testing framework. Empirically (random sampling) estimated statistical Power (1 � �) - probability of rejecting a false null
hypothesis - of the test at the 95% con�dence level for di�erent ensemble sizes (N = 30, 40, 50, 60). The null hypothesis that
two simulation ensembles are statistically identical is tested for each perturbed dcs case against the dcs = 400.0 case.
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Power Analysis: Atmosphere tests

• Expand on Power Analysis:
– More tuning parameters

• ice_sed_ai
• sol_factb_interstitial
• sol_factic_interstitial
• cldfrc_dp1
• zm_conv_lnd
• dcs
• zm_conv_ocn
• zm_conv_dmpdz

• KS testing framework most powerful:
– detects changes of smaller magnitudes 

confidently
– compared to Kernel and Energy test.
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Example of Power Analysis. Probability of correctly rejecting a 
false null hypothesis (Power) of the test in detecting changes to a
EAM tuning parameter from a control case (dcs = 400) for different 
short simulation (1yr) ensemble sizes (N).

Mahajan et al. 2019
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Test Case: Cori vs. Edison

• Conducted short simulation (1yr) ensembles on 
both Edison and Cori:

– F1850C5-CMIP6 compset
– ne4 (100 ensemble members)
– ne30 (30 ensemble members)

• All three - TSC (Wan, et al.), perturbation growth 
(Singh, et al.),  and KS - climate reproducibility 
tests passed.

• Implications: Cori can be confidently used for 
remaining DECK simulations

Evaluate if E3SMv1 DECK simulations on 
Edison can be reproduced on Cori

11/16/19, 9'32 AME3SM Floating Points, August ʼ19: E3SM Moving Toward Version 2

Page 1 of 8https://mailchi.mp/7757111dc993/e3sm-floating-points-august-19-e3sm-moving-toward-version-2?e=8f20565b89

August 14, 2019
 

View In Browser
 

News from DOE's state-of-the-science earth system model development project.

From the Interim Program Manager

The E3SM project continues to make good progress toward
its goals, with a recent landmark paper, a new computing
platform, E3SM code freeze in preparation for E3SM v2, and
other accomplishments. Several Department of Energy
(DOE) Biological and Environmental Research (BER)
projects with an E3SM focus are either likely to occur or are
already funded. Read more.

Project News

Modeling of Precipitation Diurnal
Cycle Improved
 
For an Eos Research Spotlight, the American

Subscribe Past Issues Translate
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Reproducibility Tests (EAM) on Master

• Nightly tests run on Cori (E3SM custom tests)
– Time step convergence test

– Perturbation growth test

– KS testing framework

• On CDASH under E3SM_Customs_Tests
– https://my.cdash.org/index.php?project=E3SM

– All runs archived:
– Large ne4 1yr F1850C5 ensemble available 

(>1000)

https://my.cdash.org/index.php%3Fproject=E3SM
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EVV:
• Extended Verification and 

Validation for Earth System 
Models (EVV):

• Python based toolkit: 

• Runs control and 
perturbed 
ensembles

• Post-processes 
model output

• Conducts tests

• Publishes results 
and auxiliary plots, 
tables  
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MPAS-O Reproducibility tests: Ensembles
• Generate ensembles:

1. Low Res NYF Ocean run:
• 240 km resolution (7153 cells)

• Run to quasi-equilibrium – pick base initial condition

• Perturb initial condition to machine order precision:
– Add perturbations to 3D temperature field initial condition

– Save perturbed initial condition files

• Use create_clone to generate ensembles:
– each run reading a different perturbed initial condition file

2. Pertlim capability for MPAS-O (near future):
• Replicate capability within EAM to MPAS-O

• Automatically perturb initial conditions

• Generate ensembles by tweaking a namelist parameter.

• Replicate multi-instance capability within EAM to MPAS.

Machine Precision Perturbations to T
at each grid point, j

T’j = (1+x’)Tj

x’ is a uniform random number transformed to 
range from (-10-14, 10-14)

Base Initial Condition for Ensembles

Time (days)
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MPAS-O Reproducibility tests: Approach

• Generate control and perturbed ensembles at QU240 resolution

• Evaluate 5 prognostic variables (Baker et al. 2016)
– SSH, T, U, V, Salinity 
– Annual average of year 2.

• Ocean variability is spatially very heterogenous (as compared to the 
atmosphere):
– Evaluate at each grid point.

• Conduct fine-grained null hypothesis tests at each grid point: 
– Two sample KS test: Popular non-parametric test 
– Cucconi test: Better power, rank based non-parametric test. 

Growth of Round-off differences in MPAS-O

Larger Null Hypothesis: Control and perturbed ensembles belong to the same population

Growth of machine precision differences in oQU240 MPAS-O and ensemble spread: L1 Norm (sum of 
absolute difference at each grid point, log-scale) of SST of each of the 100 ensemble members with 
round off differences in initial conditions compared to a reference run for the control (kappa = 1800, 
red lines) and modified (kappa = 600, blue lines) ensembles. 
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Cucconi Test

Cucconi test
In statistics, the Cucconi test is a nonparametric test for jointly comparing central tendency and
variability (detecting location and scale changes) in two samples. Many rank tests have been
proposed for the two-sample location-scale problem. Nearly all of them are Lepage-type tests, that
is a combination of a location test and a scale test. The Cucconi test was first proposed by
Cucconi.[1]

The Cucconi test is not as familiar as other location-scale tests but it is of interest for several
reasons. First, from a historical point of view, it was proposed some years before the Lepage test,
the standard rank test for the two-sample location-scale problem. Secondly, as opposed to other
location-scale tests, the Cucconi test is not a combination of location and scale tests. Thirdly, it
compares favorably with Lepage type tests in terms of power and type-one error probability[2] and
very importantly it is easier to be computed because it requires only the ranks of one sample in the
combined sample, whereas the other tests also require scores of various types as well as to
permutationally estimate mean and variance of test statistics because their analytic formulae are
not available.[3]

The Cucconi test is based on the following statistic:

where  is based on the standardized sum of squared ranks of the first sample elements in the
pooled sample, and  is based on the standardized sum of squared contrary-ranks of the first
sample elements in the pooled sample.  is the correlation coefficient between  and . The test
statistic rejects for large values, a table of critical values is available.[4] The p-value can be easily
computed via permutations.

The interest on this test has recently increased spanning applications in many different fields like
hydrology, applied psychology and industrial quality control.[5]

Lepage test

See also

• Test Statistic:

• Larger test-statistic indicates that Ensemble A and B come from different populations.

• Popular in other fields like hydrology, quality control, etc. (e.g. Mukherjee and Marozzi
et al. 2014)

U: based on squared sum of ranks of 
samples in Ensemble A in the two sample
pool of Ensembles A and B

V: based on squared sum of contrary-ranks 
of samples in Ensemble A in the pool.

r: Correlation coefficient between U and V 
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MPAS-O Reproducibility Tests: Approach

False Discovery Rate (FDR) approach (Wilks et al. 2006, Ventura et al. 2004):

– For single test, null hypothesis is rejected if:
• Test statistic p-value (p) is less than a critical value, a (say 0.05): p <= a
• For M tests, aM would be rejected for true null hypotheses just by chance

– For multiple tests, FDR constrains critical value (aFDR) for local hypothesis tests (H0):

– Global Null Hypothesis Test (G0): Reject if pj <= aFDR at any grid point.
– Robust for correlated tests – e.g. spatial correlations (Wilks et a. 2006, Renard et al. 2008). 
– Used in testing field significance

Confidential manuscript submitted to JGR-Atmospheres

ate to study extremes over those data points. We find that a few grid (⇡5%) points exhibit sig-172

nificant auto-correlation at the 5% level in the observational data over mainland Europe and173

US. But, a larger fraction of points over Greenland and North America exhibit significant auto-174

correlation. However, not all of these lead to a failure of the KS goodness of fit test. Less than175

1% of data points show significant auto-correlation in monthly maxima of precipitation ex-176

tremes in the winter season for both model ensembles.177

To capture the influence of NAO on extremes, the base GEV model is modified to in-178

clude the NAO index as a covariate in the location parameter term as µ = µ0+↵.NAO(t),179

where NAO(t) is the NAO index for the corresponding winter month, t, and ↵ represents the180

linear rate of change of the location parameter with the NAO index. The parameters of the GEV(µ0+181

↵.NAO(t),�, ⇠) model, including ↵, are again computed by the maximum log-likelihood method182

to fit a GEV distribution. We call this GEV model the NAO GEV model, hereafter. Here, we183

do not investigate the non-linear impacts of NAO on the location parameter as or its impacts184

on the scale and shape parameters, which will be the subject of future studies. Theoretically,185

the distribution of GEV parameters is approximately multivariate normal with a variance-covariance186

matrix that can be computed at the maximum likelihood estimates [Coles, 2001].187

To establish the significance of adding a NAO covariate to the base model (i.e to ensure188

that the NAO GEV model is significantly different than the BASE GEV model), we use the189

likelihood-ratio test. The likelihood-ratio test is based on the deviance statistic - difference in190

the maximized log-likelihoods between the NAO GEV model and the base model [Coles, 2001]191

- at each grid point. If the p-value of the deviance statistic is less than a prescribed critical value192

(↵), the null hypothesis that the NAO GEV model and the base GEV model are statistically193

similar is rejected. When a single hypothesis is being tested, the critical value is the given sig-194

nificance level of testing (↵, say 0.05). But, when multiple hypotheses (say M ) are being tested195

simultaneously (one for each grid point, here), M↵ hypotheses will be erroneously rejected196

just by chance even if all the null hypotheses were true [e.g. Wilks, 2006]. To appropriately197

control for falsely rejecting such true null hypotheses, we use the false discovery rate (FDR)198

approach [Renard et al., 2008; Wilks, 2006; Ventura et al., 2004] to compute a constrained crit-199

ical value, ↵FDR, for a given global significance level, ↵, as follows:200

↵FDR = max
j=1,2,...,M

{pj : pj  ↵(j/M)} (2)

–7–

Correct for simultaneous multiple null hypothesis tests (M grid points)

pj are sorted p-values of 
M tests
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FDR Approach: Illustration
4346 VOLUME 17J O U R N A L O F C L I M A T E

FIG. 2. Illustration of the traditional FPR and FDR procedures on
a stylized example, with q 5 a 5 20%. The ordered p-values, p(i),
are plotted against i/n, i 5 1, . . . , n, and are circled and crossed to
indicate that they are rejected by the FPR and FDR procedures, re-
spectively.

TABLE 1. Quantities relevant to traditional FPR and new FDR procedures. The information that is known is indicated in bold. FPP, FNP,
FDP, and FNDP indicate, respectively, the observed false positive, negative, discovery and nondiscovery proportions, and FPR, FNR, FDR,
FNDR indicate the corresponding expected proportions, which we refer to as rates; for example, E(FDP) 5 FDR.

TRUTH

Decision

Maintain H0 Reject H0 Row totals
Quantities relevant to
FPR procedures

H0 n 2 nFPH0

No. correctly maintained

nFP

No. of false positives

nH0
No. of true H0

FPP 5
nFP
nH0

FPR5 a

HA nFN

No. of false negatives

n 2 nFNHA

No. correctly rejected

nHA
No. of false H0

FNP 5
nFN
nHA

FNR 5 ??
Column totals naccept

No. of maintained H0

nreject
No. of rejected H0

n (# of tests)

Quantities relevant to FDR FNDP 5
nFN
naccept

FNDR # a
(see section 4)

FDP 5
nFP
nreject

FDR # q

p-value that lies below the (0, q) line, indicated on Fig.
2 by an arrow.
Figure 2 also shows that, although the FDR rejection

rule is complicated, effectively all p-values below a cer-
tain threshold are rejected, since the p-values are plotted
in ascending order. This yields two remarks. First, this
explains why the three sets of rejected null hypotheses
in Fig. 1 were nested subsets: the implicit FDR threshold
was between the significance levels of the two FPR
procedures, a 5 5% and the Bonferroni-corrected a 5
n21 3 5%.
Second, this suggests that the outcome of the FDR

procedure could have been obtained with a traditional
FPR procedure with some cleverly chosen a. So why
bother with an FDR testing procedure? The answer,
which we develop further in the next section, is that
FDR procedures control false rejections in a meaningful
way.

b. Controlling mistakes

When we reject or fail to reject a particular H0, we
may either make the correct decision or make one of
two mistakes: reject when H0 is in fact true or fail to
reject when H0 is in fact false. These mistakes are com-
monly referred to as false positive and false negative
detections and also as type I and type II errors. We
denote by nFP and nFN the numbers of such mistakes out
of the n tests (see Table 1). Since the truth is unknown,
we use testing procedures that control these errors. Both
FPR and FDR procedures control the number of false
positive detections nFP in different ways, but neither (nor
any testing procedure we know) controls the number of
false negative detections. It is easy to see why; once a
or q is chosen, the decisions about the hypotheses, as
carried out in Fig. 2, are determined; there is no room
left to control the number of false negatives.
For a traditional FPR procedure, the choice of a de-

termines the properties of the test; a is the probability
of rejecting any particular H0 by mistake, which means
that on average, a% of the n locations for which H0H0
is true will be found significant by mistake. We report
this in Table 1 as

FPP 5 n /n , FPR 5 E(FPP) 5 a,FP H0 (3)

where FPP is the observed false positive proportion,
and E stands for expectation. The FPP/FPR notation is
consistent with standard statistical terminology, where
the expectation of an observed ‘‘proportion’’ is usually
referred to as a ‘‘rate.’’ Equation (3) justifies our calling
a the FPR.
What (3) means is that the number nFP of false pos-

itives that a traditional FPR procedure allows is pro-
portional to the unknown number n of true null hy-H0
potheses. So, for example, if most or all locations have
n true, this test will yield a large number of falseH0
positive detections, as we will later illustrate in Fig. 3.

Confidential manuscript submitted to JGR-Atmospheres

ate to study extremes over those data points. We find that a few grid (⇡5%) points exhibit sig-172

nificant auto-correlation at the 5% level in the observational data over mainland Europe and173

US. But, a larger fraction of points over Greenland and North America exhibit significant auto-174

correlation. However, not all of these lead to a failure of the KS goodness of fit test. Less than175

1% of data points show significant auto-correlation in monthly maxima of precipitation ex-176

tremes in the winter season for both model ensembles.177

To capture the influence of NAO on extremes, the base GEV model is modified to in-178

clude the NAO index as a covariate in the location parameter term as µ = µ0+↵.NAO(t),179

where NAO(t) is the NAO index for the corresponding winter month, t, and ↵ represents the180

linear rate of change of the location parameter with the NAO index. The parameters of the GEV(µ0+181

↵.NAO(t),�, ⇠) model, including ↵, are again computed by the maximum log-likelihood method182

to fit a GEV distribution. We call this GEV model the NAO GEV model, hereafter. Here, we183

do not investigate the non-linear impacts of NAO on the location parameter as or its impacts184

on the scale and shape parameters, which will be the subject of future studies. Theoretically,185

the distribution of GEV parameters is approximately multivariate normal with a variance-covariance186

matrix that can be computed at the maximum likelihood estimates [Coles, 2001].187

To establish the significance of adding a NAO covariate to the base model (i.e to ensure188

that the NAO GEV model is significantly different than the BASE GEV model), we use the189

likelihood-ratio test. The likelihood-ratio test is based on the deviance statistic - difference in190

the maximized log-likelihoods between the NAO GEV model and the base model [Coles, 2001]191

- at each grid point. If the p-value of the deviance statistic is less than a prescribed critical value192

(↵), the null hypothesis that the NAO GEV model and the base GEV model are statistically193

similar is rejected. When a single hypothesis is being tested, the critical value is the given sig-194

nificance level of testing (↵, say 0.05). But, when multiple hypotheses (say M ) are being tested195

simultaneously (one for each grid point, here), M↵ hypotheses will be erroneously rejected196

just by chance even if all the null hypotheses were true [e.g. Wilks, 2006]. To appropriately197

control for falsely rejecting such true null hypotheses, we use the false discovery rate (FDR)198

approach [Renard et al., 2008; Wilks, 2006; Ventura et al., 2004] to compute a constrained crit-199

ical value, ↵FDR, for a given global significance level, ↵, as follows:200

↵FDR = max
j=1,2,...,M

{pj : pj  ↵(j/M)} (2)

–7–

Ventura et al. 2004
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MPAS-O Reproducibility Tests
Evaluate False Positive Rate:

Bootstrap with Control Ensemble (150 ensemble members):

• Randomly draw two samples with N=M=30 members

• Conduct KS test and Cucconi test for alpha = 0.05

• Repeat 500 times at alpha = 0.05

KS test:
95th percentile of the no. of cells rejecting the local null hypothesis (FDR) = 0
95th percentile of the no. of cells rejecting the local null hypothesis = 426

Cucconi test:
95th percentile of the no. of cells rejecting the local null hypothesis = 15
95th percentile of the no. of cells rejecting the local null hypothesis = 643
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MPAS-O Reproducibility Tests: Results

Growth of machine precision differences in oQU240 MPAS-O and ensemble spread: L1 
Norm (sum of absolute difference at each grid point, log-scale) of SST of each of the 100 
ensemble members with round off differences in initial conditions compared to a reference 
run for the control (kappa = 1800, red lines) and modified (kappa = 600, blue lines) 
ensembles. 

Known Climate Changing Case: GM Kappa = 600 (Default = 1800)
30 member ensembles for test and control case

Both tests reject the null 
hypothesis that the two 
ensembles belong to the 
same population at the 0.05 
significance level.
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MPAS-O Reproducibility Tests: Power Analysis

Type II error rate: Probability of accepting a false null hypothesis

• Turn a tuning parameter knob incrementally: 
• Gent and McWilliams kappa (600 to 1800):

• Ensembles: 
• 100 members for each case
• T’j = (1+x’)Tj, x’ is random number transformed to range from (-10-14, 10-14)

• Power Analysis:
• Randomly pick N=30 (=40, 50, 60) members from the control and perturbed sets
• Conduct test
• Repeat (500 times)
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Power Analysis of Cucconi Testing Framework
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Power Analysis of KS Testing Framework

N= 30 N = 40 N = 50 N = 60

MPAS-O Reproducibility Tests: Power Analysis
Controlled changes to GM kappa tuning parameter in MPAS-O

Power Analysis. Probability of correctly rejecting a false null hypothesis (Power) of the test in detecting 
changes to a MPAS-O tuning parameter from a control case (GM kappa = 1800) for different ensemble 
sizes (N).
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Summary:
• Use short ensembles for model verification as E3SM adapts for Exascale

• Developed a multivariate testing framework for climate reproducibility after perturbation growth:
– EVV

• Power Analysis of tests to evaluate their detection limits

• Test Cases:

• Known climate changing perturbations: tuning parameter changes
• Compiler optimization choices, reproducibility of frozen model after months of software updates
• Machine port from NERSC’s Edison to Cori of E3SMv1 atmosphere model

• Expanding to include reproducibility testing to MPAS-O
– Generated control and perturbed GMPAS-NYF ensembles using create_clone
– KS Test and Cucconi tests with false discovery rates
– Power Analysis with GM kappa tuning parameter
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Next Steps and Challenges
• Future work for MPAS-O tests:

– Conduct ensembles trajectories from a better quasi-equilibrium 
initial state

– Power analysis with other controlled changes
– Evaluate applicability of low-resolution results at high-resolution

– Explore other multivariate tests
– Apply to prior known non-b4b changes and live non-b4b 

changes

• Integrating tests into EVV/CIME.

• Develop ensemble-based tests for individual software kernels: 
RRTMGP, MG2, CLUBB, MAM4, etc. (in a SCM framework?)

• Investigate applicability to other model components. 

Ensemble spread in SCM

Hack and Pedretti (2000)
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Thanks!

• Acknowledgements:
– DOE E3SM Project and CMDV-SM Project
– Oak Ridge Leadership Computing Facility (OLCF)
– NERSC
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Test for Extremes
• Distribution tests perform poorly

on distribution with different tails
– Known for univariate tests, 

unexplored for multivariate 
tests.

• Use Generalized Extreme Value 
(GEV) theory (e.g. Mahajan et al. 
2015, Evans et al. 2014).
– max./min. of a process belong 

to GEV distribution.
– Analogous to central limit 

theorem
– GEV parameters normally 

distributed asymptotically

G(z) = exp

⇢
�[1 + ⇠(

z � µ

�
)]�1/⇠

�

z : 1 + ⇠(z � µ)/� > 0

where µ, s and x represent the location, scale 
and shape parameter respectively.

For additional information, contact:

Matthew Norman
Computational Climate Scientist

National Center for Computational Sciences
Oak Ridge National Laboratory

normanmr@ornl.gov

climatemodeling.science.energy.gov/acme

Computational Benefits of an Ensemble-Based 
Approach to Climate Modeling and Testing at 
Scale - Matthew Norman, Abigail Gaddis, Valentine Anantharaj, 
Kate Evans, Salil Mahajan, Patrick Worley

Current Challenges of Climate Modeling at Scale
• Throughput needs force ACME to use many processors at high resolution
• CAM-SE on 28km grid: only 32 columns of elements per node
• MPI wait consumes 40% of CAM-SE runtime, and it still only runs 1 SYPD
• GPU speed-up of CAM-SE’s tracer transport is 3.3x, 2.6x, 1.8x, and 1.05x at 

384, 128, 64, and 32 columns of elements per node, respectively
• End-to-end time for running 100 years of baseline climate was five weeks
Dominant Needs for ACME Going Forward
• More elements per node are necessary for GPU performance and lower MPI
• Faster throughput is needed to get high-resolution answers in feasible time

Ensembles Increase Throughput and Elements Per Node

Computational Motivations

Experimental Setup
• Three atmosphere-only CAM5 one-degree experiments starting at year 1850: 

(E1) A single 100-year run; (E2) five 20-year runs; and (E3) 100 one-year runs
• Ensembles have a randomly perturbed initial temperature field (mag. 10-14)
• Results confirm distinct climates within 23 days Æ first month discarded for E3
Computational Results
• E3 used 5x more elements per node and 25x greater throughput than E1
• E3 used 25% of Titan and finished merely 12 hours from submission, whereas 

E1 and E2 took roughly five weeks a piece to complete.
• E3 used only 60% of the core hours on Titan that E1 and E2 used
• Two of the 100 ensembles failed for reasons that are being investigated
Computational Implications
• The ensemble experiments consume a “capability portion” of Titan, thus 

receiving queue priority and a better chance at winning large allocations
• The GPU tracer transport routines will run 3x faster in the ensemble runs 

because of having more elements per node
• Over 50x reduction in user time spent maintaining the runs
• 40% improvement in usage of available core hours

Experiment Setup & Computational Results

Current Scientific Results

Figure 1: (above) L1 norm of relative 
difference in 850mb temperature 
between each of the 100 ensembles 
over time. Plot demonstrates 
ensembles are distinct after roughly 
23 days.

Figure 2: (above) (a) Precipitation 
extremes for the E3.
(b) Statistically significant 
difference in precipitation extremes 
between E1 and E3

Figure 3: (left) (a) Histogram of globally 
and annually averaged radiation residual 
at the top of the model for E1, E2, and E3

• More comprehensive similarity tests including externally developed tools
• Inclusion of the ocean and other processes in the ensemble framework
• Running with the GPU-ported portions of ACME as well as hi-res runs
• Developing cross-validation suite between compilers, flags, and machines

Future Work

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by 
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
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Climate Extremes Test
• Null Hypothesis (G0): Simulation of extremes of a variable between two SISE is statistically 

indistinguishable.

• Annual maxima for each grid point are fit to a GEV distribution.

• G0: Extremes at each grid point are statistically indistinguishable

• Test statistic (g): No. of grid points that reject G0

• G0 rejected if t > b, where b is some critical number, obtained using resampling techniques.
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Climate Extremes
a.

b.

c.

d.

Location	Parameter,	Surface	Temperature(K) Location	Parameter,	Precipitation	Rate	(mm/day)

Surface	Temperature	Extremes:	Default	 Precipitation	Extremes:	Default	

Diff.	in	Location	Parameter,	Surface	Temperature(K) Diff.	in	Location	Parameter,	Precipitation	Rate	(mm/day)

Default	– O1	 Default	– O1	
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Climate Extremes

Exploring an Ensemble-Based Approach to Atmospheric Climate Modeling and Testing at Scale

Salil Mahajan↵ (mahajans@ornl.gov), Abigail L. Gaddis↵, Katherine J. Evans↵ and Mathew R. Norman↵

↵Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN

1. Introduction

We evaluate the utility of short independent simulation ensembles (SISEs) for characterizing a cli-
mate model’s intrinsic variability for verification tests and scientific analyses on HPC environments:
• Traditional climate model verification as well as scientific applications rely largely on several single
long runs (SLRs) - problematic for high resolution configurations due to long throughput times.

• Running a SISE is economical as compared to a SLR. For example, running 100 independent
one-year-long ensembles instead of a single 100-year run, on the same number of nodes, pro-
duces a 100x greater workload per node and, therefore, significantly reduced relative MPI and
PCI-e overheads (i.e., better parallel scaling).

• Verification Testing: We design a new SISE-based testing framework for climate reproducibility -
a decision making tool to check if non-bit for bit changes are climate changing.

• We apply the testing framework on SISE with different compiler optimizations.
• We also evaluate if SISE can replace SLRs for generating stationary noise statistics (natural
variability) of the system using this testing framework.

2. Model Experiments

• Model: DOE Accelerated Climate Model for Energy (ACME) v0
• Configuration: Active atmosphere & land, prescribed cyclical 1850 SSTs and sea-ice distribution
• Spatial Resolution: 208km at the equator (2o), 30 vertical layers
• Machine Configuration: PGI compiler on Titan
• Ensembles: Machine-precision level random perturbations to the initial 3-D temperature field

Table 1: List of experiments. Failures of several members, as expected using a multi-petascale

computer, create slightly different ensemble sizes for SISEs job submissions.

Name Description Ens. Size

SLR Long control simulation (100 years, -O2 optimization) 1
SISE-DEFAULT Short 1-yr simulation ensemble with default (-O2) optimization 65
SISE-O1 Short 1-yr simulation ensemble with -O1 optimization 59
SISE-FAST Short 1-yr simulation ensemble with -fast optimization 62
SISE-LND-INIT Short simulation ensemble with land initialized with states from

70 different years of the SLR
70

3. Testing Methodology

3.1 Equality of Distributions

• Null Hypothesis (H0): Two simulation ensembles (SISE) represent the same climate state.
• Use global annual means of all standard model output variables (158 variables).
• Test the null hypothesis of equality of distributions for global annual means of each variable in-
dependently (H0) based on the non-parametric Kolmogorov-Smirnov (KS) test between the two
SISEs.

• Test statistic (t): No. of variables that reject H0 at a given confidence level (say 95%).
• H0 is rejected if t > ↵, where ↵ is some critical number (threshold).
• The critical number (↵) for a certain confidence level (95%) is obtained from an empirically de-
rived approximate null distribution of t using resampling techniques.

3.2 Climate Extremes

• Distance based equality of distribution tests like the KS-test not robust for distributions with dif-
ferent tails because the cumulative distribution functions converge at the tails.

• We evaluate extremes separately using the generalized extreme value (GEV) theory, which pos-
tulates that, asymptotically, the normalized maxima (z) of a process can be represented by:

G(z) = exp

⇢
�[1 + ⇠(

z � µ

�
)]�1/⇠

�
(1)

where µ, � and ⇠ represent the location, scale and shape parameter.
• Presently, we evaluate the location parameter of the GEV model for annual maxima of daily av-
erage surface temperature and precipitation rate separately.

• Null Hypothesis (G0): Simulation of extremes of a variable between two SISE is statistically in-
distinguishable.

• Annual maxima for each grid point are fit to a GEV distribution.
• Test the null hypothesis that the simulation of extremes of a variable between two simulation
ensembles is statistically indistinguishable (G0) at the 95% level at each grid point.

• Test statistic (g): No. of grid points that reject G0

• G0 is rejected if t > �, where � is some critical number, obtained using resampling techniques.

4. Test Results: Optimization Choices

4.1 Equality of Distributions

Table 2: KS-test Results. The test statistic (t) is the number (%) of variables that reject H0 based

on the KS-test. H0 is accepted if t < ↵.

Comparison Test Statistic (t) Critical Value (↵) H0 Test

SISE-DEFAULT vs. SISE-O1 1 (0.6%) 17 Accept H0

SISE-DEFAULT vs. SISE-FAST 24 (15.2%) 14 Reject H0

SISE-O1 vs. SISE-FAST 23 (14.6%) 16 Reject H0

• Monte Carlo Permutations: Simulations from the two ensembles of size n and m are pooled to-
gether and the simulations from the pool are then randomly assigned to one of two groups of sizes
n and m. The t-statistic is then computed for the random drawing. If all possible such random
drawings are made, the null distribution of t is exact. Here, we only conduct 500 re-samplings for
all cases, which yields an approximate null distribution. The critical values listed in Table 2 are for
95% confidence level, i.e. 95% of the 500 resamples have < ↵ variables rejecting H0.

• SISE-DEFAULT (with -O2) and SISE-O1 simulations represent the same climate state.
• Aggressive compiler choices (SISE-FAST) with the PGI compiler on Titan can result in climate-
changing simulations.

4.2 Climate Extremes

a.

b.

c.

d.

Location	Parameter,	Surface	Temperature(K) Location	Parameter,	Precipitation	Rate	(mm/day)

Surface	Temperature	Extremes:	Default	 Precipitation	Extremes:	Default	

Diff.	in	Location	Parameter,	Surface	Temperature(K) Diff.	in	Location	Parameter,	Precipitation	Rate	(mm/day)

Default	– O1	 Default	– O1	

Figure 1: Climate Extremes. Location parameter of (a) surface temperature (K) over land areas

and (b) precipitation rate (mm/day) for the default short simulation ensemble. Difference in location

parameter between SISE-DEFAULT and SISE-O1 experiments for (c) surface temperature and (d)

precipitation rate. Colored areas represent grid points where the extremes are statistically distin-

guishable at the 95% confidence level.

Table 3: Climate extremes test results. The test statistic (g) is the percentage of variables that reject

G0 based on the Student’s t-test. G0 is accepted if t < ↵.

Comparison Variable Test statistic (g) Critical value (�) G0 Test

SISE-DEFAULT vs.
SISE-O1

Precipitation Rate 5.1% 6.5% Accept G0

Surface Temperature 5.0% 9.6% Accept G0

SISE-DEFAULT vs.
SISE-FAST

Precipitation Rate 4.7% 6.3% Accept G0

Surface Temperature 3.6% 9.6 % Accept G0

SISE-O1 vs. SISE-
FAST

Precipitation Rate 5.2% 6.5% Accept G0

Surface Temperature 10.3% 9.8% Reject G0

• All SISE simulations are identical to each other in terms of their simulation of climate extremes.
• The result is in contrast to the result of the KS-testing framework.
• It suggests that either optimization choices do not effect climate extremes or that climate ex-
tremes are not a good metric to evaluate answer changes that might effect the simulation of the
climate, with 60 ensemble members.

5. Single Long Run (SLR) vs. Short Independent Simulation Ensemble (SISE)
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Figure 2: For each ensemble pair of the SISE simulations, the L1-norm of the absolute differences

for hourly 850mb temperature in Kelvin is plotted. The initial 10�14 K differences grow rapidly over

the first 23 days at which point they plateau at roughly 10�2 and become independent of each other.

Table 4: KS test results: SLR vs. SISE.

Comparison Test Statistic (t) Critical Value (↵) H0 Test Re-

sult

SLR vs. SISE-DEFAULT 80 (50.6 %) 15 Reject H0

SLR vs. SISE-LND-INIT 74 (48 %) 13 Reject H0

• The SLR simulation, broken into an ensemble of 1-yr segments, is clearly distinct from the SISE-
DEFAULT simulation ensemble based on the test.

• Individual simulations in the SISE become independent of each other in a few days (Fig. 2).
• However, it is known that free atmospheric internal variability also includes variability on longer
time-scales (Fig 3a).

• This low frequency variability in the SLR experiment will significantly influence the variability of the
ensemble derived from breaking the SLR simulation into one year segments. This is consistent
with the rejected null hypothesis for the derived SLR and SISE-default ensemble set.

1 10 1 10

Time Period (Years) Time Period (Years)

CTRL	Experiment:	Surface	Temp.	Spectrum SISE-DEFAULT	Experiment:	Surface	Temp.	Spectrum

a. b.

Figure 3: Climate variability. Normalized temporal variance spectrum (red: smoothed with a moving

window of 11) of monthly global-average surface temperature after the seasonal cycle is removed,

for (a) the SLR long simulation of 80 years and (b) SISE-DEFAULT one year simulation ensemble

(65 years) with the global averaged surface temperature time series joined together into one long

time series.

7. Summary and Discussion

• We investigate SISE as a potential framework for model verification and scientific analysis
• A new SISE-based testing framework is designed for climate reproducibility tests.
• Aggressive compiler optimizations can significantly change model climate statistics. Although,
climate extremes are not sensitive to these changes.

• Unforced low-frequency atmospheric intrinsic variability implies that SISE, initialized with atmo-
spheric states differing only at machine precision levels, do not capture the variability of a SLR.

Acknowledgements: The authors are grateful for support from the U.S. Department of Energy ACME and CMDV-Software projects. The extremes methodology was initiated through an ORNL Laboratory SEED level Laboratory Research and Development Grant. This research used resources of the OLCF, which is supported by the Office of Science of the DOE under Contract No. DE-AC05-00OR22725.

• All SISE simulations are identical to each other in terms of their simulation of 
climate extremes.

• The result is in contrast to the result of the KS-testing framework.

• It suggests that either optimization choices do not effect climate extremes, or

• Climate extremes are not a good metric to evaluate answer changes that 
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Single Long Run (SLR) vs. SISE

• SLR is clearly distinct from the SISE-DEFAULT

Exploring an Ensemble-Based Approach to Atmospheric Climate Modeling and Testing at Scale

Salil Mahajan↵ (mahajans@ornl.gov), Abigail L. Gaddis↵, Katherine J. Evans↵ and Mathew R. Norman↵

↵Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN

1. Introduction

We evaluate the utility of short independent simulation ensembles (SISEs) for characterizing a cli-
mate model’s intrinsic variability for verification tests and scientific analyses on HPC environments:
• Traditional climate model verification as well as scientific applications rely largely on several single
long runs (SLRs) - problematic for high resolution configurations due to long throughput times.

• Running a SISE is economical as compared to a SLR. For example, running 100 independent
one-year-long ensembles instead of a single 100-year run, on the same number of nodes, pro-
duces a 100x greater workload per node and, therefore, significantly reduced relative MPI and
PCI-e overheads (i.e., better parallel scaling).

• Verification Testing: We design a new SISE-based testing framework for climate reproducibility -
a decision making tool to check if non-bit for bit changes are climate changing.

• We apply the testing framework on SISE with different compiler optimizations.
• We also evaluate if SISE can replace SLRs for generating stationary noise statistics (natural
variability) of the system using this testing framework.

2. Model Experiments

• Model: DOE Accelerated Climate Model for Energy (ACME) v0
• Configuration: Active atmosphere & land, prescribed cyclical 1850 SSTs and sea-ice distribution
• Spatial Resolution: 208km at the equator (2o), 30 vertical layers
• Machine Configuration: PGI compiler on Titan
• Ensembles: Machine-precision level random perturbations to the initial 3-D temperature field

Table 1: List of experiments. Failures of several members, as expected using a multi-petascale

computer, create slightly different ensemble sizes for SISEs job submissions.

Name Description Ens. Size

SLR Long control simulation (100 years, -O2 optimization) 1
SISE-DEFAULT Short 1-yr simulation ensemble with default (-O2) optimization 65
SISE-O1 Short 1-yr simulation ensemble with -O1 optimization 59
SISE-FAST Short 1-yr simulation ensemble with -fast optimization 62
SISE-LND-INIT Short simulation ensemble with land initialized with states from

70 different years of the SLR
70

3. Testing Methodology

3.1 Equality of Distributions

• Null Hypothesis (H0): Two simulation ensembles (SISE) represent the same climate state.
• Use global annual means of all standard model output variables (158 variables).
• Test the null hypothesis of equality of distributions for global annual means of each variable in-
dependently (H0) based on the non-parametric Kolmogorov-Smirnov (KS) test between the two
SISEs.

• Test statistic (t): No. of variables that reject H0 at a given confidence level (say 95%).
• H0 is rejected if t > ↵, where ↵ is some critical number (threshold).
• The critical number (↵) for a certain confidence level (95%) is obtained from an empirically de-
rived approximate null distribution of t using resampling techniques.

3.2 Climate Extremes

• Distance based equality of distribution tests like the KS-test not robust for distributions with dif-
ferent tails because the cumulative distribution functions converge at the tails.

• We evaluate extremes separately using the generalized extreme value (GEV) theory, which pos-
tulates that, asymptotically, the normalized maxima (z) of a process can be represented by:

G(z) = exp

⇢
�[1 + ⇠(

z � µ

�
)]�1/⇠

�
(1)

where µ, � and ⇠ represent the location, scale and shape parameter.
• Presently, we evaluate the location parameter of the GEV model for annual maxima of daily av-
erage surface temperature and precipitation rate separately.

• Null Hypothesis (G0): Simulation of extremes of a variable between two SISE is statistically in-
distinguishable.

• Annual maxima for each grid point are fit to a GEV distribution.
• Test the null hypothesis that the simulation of extremes of a variable between two simulation
ensembles is statistically indistinguishable (G0) at the 95% level at each grid point.

• Test statistic (g): No. of grid points that reject G0

• G0 is rejected if t > �, where � is some critical number, obtained using resampling techniques.

4. Test Results: Optimization Choices

4.1 Equality of Distributions

Table 2: KS-test Results. The test statistic (t) is the number (%) of variables that reject H0 based

on the KS-test. H0 is accepted if t < ↵.

Comparison Test Statistic (t) Critical Value (↵) H0 Test

SISE-DEFAULT vs. SISE-O1 1 (0.6%) 17 Accept H0

SISE-DEFAULT vs. SISE-FAST 24 (15.2%) 14 Reject H0

SISE-O1 vs. SISE-FAST 23 (14.6%) 16 Reject H0

• Monte Carlo Permutations: Simulations from the two ensembles of size n and m are pooled to-
gether and the simulations from the pool are then randomly assigned to one of two groups of sizes
n and m. The t-statistic is then computed for the random drawing. If all possible such random
drawings are made, the null distribution of t is exact. Here, we only conduct 500 re-samplings for
all cases, which yields an approximate null distribution. The critical values listed in Table 2 are for
95% confidence level, i.e. 95% of the 500 resamples have < ↵ variables rejecting H0.

• SISE-DEFAULT (with -O2) and SISE-O1 simulations represent the same climate state.
• Aggressive compiler choices (SISE-FAST) with the PGI compiler on Titan can result in climate-
changing simulations.

4.2 Climate Extremes

a.

b.

c.

d.

Location	Parameter,	Surface	Temperature(K) Location	Parameter,	Precipitation	Rate	(mm/day)

Surface	Temperature	Extremes:	Default	 Precipitation	Extremes:	Default	

Diff.	in	Location	Parameter,	Surface	Temperature(K) Diff.	in	Location	Parameter,	Precipitation	Rate	(mm/day)

Default	– O1	 Default	– O1	

Figure 1: Climate Extremes. Location parameter of (a) surface temperature (K) over land areas

and (b) precipitation rate (mm/day) for the default short simulation ensemble. Difference in location

parameter between SISE-DEFAULT and SISE-O1 experiments for (c) surface temperature and (d)

precipitation rate. Colored areas represent grid points where the extremes are statistically distin-

guishable at the 95% confidence level.

Table 3: Climate extremes test results. The test statistic (g) is the percentage of variables that reject

G0 based on the Student’s t-test. G0 is accepted if t < ↵.

Comparison Variable Test statistic (g) Critical value (�) G0 Test

SISE-DEFAULT vs.
SISE-O1

Precipitation Rate 5.1% 6.5% Accept G0

Surface Temperature 5.0% 9.6% Accept G0

SISE-DEFAULT vs.
SISE-FAST

Precipitation Rate 4.7% 6.3% Accept G0

Surface Temperature 3.6% 9.6 % Accept G0

SISE-O1 vs. SISE-
FAST

Precipitation Rate 5.2% 6.5% Accept G0

Surface Temperature 10.3% 9.8% Reject G0

• All SISE simulations are identical to each other in terms of their simulation of climate extremes.
• The result is in contrast to the result of the KS-testing framework.
• It suggests that either optimization choices do not effect climate extremes or that climate ex-
tremes are not a good metric to evaluate answer changes that might effect the simulation of the
climate, with 60 ensemble members.

5. Single Long Run (SLR) vs. Short Independent Simulation Ensemble (SISE)
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Figure 2: For each ensemble pair of the SISE simulations, the L1-norm of the absolute differences

for hourly 850mb temperature in Kelvin is plotted. The initial 10�14 K differences grow rapidly over

the first 23 days at which point they plateau at roughly 10�2 and become independent of each other.

Table 4: KS test results: SLR vs. SISE.

Comparison Test Statistic (t) Critical Value (↵) H0 Test Re-

sult

SLR vs. SISE-DEFAULT 80 (50.6 %) 15 Reject H0

SLR vs. SISE-LND-INIT 74 (48 %) 13 Reject H0

• The SLR simulation, broken into an ensemble of 1-yr segments, is clearly distinct from the SISE-
DEFAULT simulation ensemble based on the test.

• Individual simulations in the SISE become independent of each other in a few days (Fig. 2).
• However, it is known that free atmospheric internal variability also includes variability on longer
time-scales (Fig 3a).

• This low frequency variability in the SLR experiment will significantly influence the variability of the
ensemble derived from breaking the SLR simulation into one year segments. This is consistent
with the rejected null hypothesis for the derived SLR and SISE-default ensemble set.

1 10 1 10

Time Period (Years) Time Period (Years)

CTRL	Experiment:	Surface	Temp.	Spectrum SISE-DEFAULT	Experiment:	Surface	Temp.	Spectrum

a. b.

Figure 3: Climate variability. Normalized temporal variance spectrum (red: smoothed with a moving

window of 11) of monthly global-average surface temperature after the seasonal cycle is removed,

for (a) the SLR long simulation of 80 years and (b) SISE-DEFAULT one year simulation ensemble

(65 years) with the global averaged surface temperature time series joined together into one long

time series.

7. Summary and Discussion

• We investigate SISE as a potential framework for model verification and scientific analysis
• A new SISE-based testing framework is designed for climate reproducibility tests.
• Aggressive compiler optimizations can significantly change model climate statistics. Although,
climate extremes are not sensitive to these changes.

• Unforced low-frequency atmospheric intrinsic variability implies that SISE, initialized with atmo-
spheric states differing only at machine precision levels, do not capture the variability of a SLR.

Acknowledgements: The authors are grateful for support from the U.S. Department of Energy ACME and CMDV-Software projects. The extremes methodology was initiated through an ORNL Laboratory SEED level Laboratory Research and Development Grant. This research used resources of the OLCF, which is supported by the Office of Science of the DOE under Contract No. DE-AC05-00OR22725.
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SLR vs. SISE

• Atmospheric models show that free atmospheric-only internal variability can include variability 
on longer time-scales (e.g. James and James, 1989, Lorenz, 1990, Held, 1993, Marshall and 
Molteni, 1993).

• This low frequency variability is not captured by SISE. 

1 10 1 10

Time Period (Years) Time Period (Years)

CTRL	Experiment:	Surface	Temp.	Spectrum SISE-DEFAULT	Experiment:	Surface	Temp.	Spectrum

a. b.
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Atmospheric Low-frequency Variability

© 1989 Nature  Publishing Group

James and James, Nature, 
1989
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Multivariate Cross-Match Test
• n 1-yr control runs (~C) 

• m 1-yr modified runs (~M)

• Coarse grained: global annual 
means

• Multivariate vector for each run (size 
~130)

• Pool vectors, N = n+m

• Pair vectors based on min. 
Mahalanobis distance

• H0: C = M

• Test-statistic (T):
– No. of pairs with one control run 

In graph theory, an r-regular spanning subgraph of G is sometimes called an r-factor
of G. Note that G!

1 is the special case of a minimum-weight non-bipartite matching used

by Rosenbaum (2005), and G!
N−1 is identical to G. In practice, we are mainly interested

in 2 ≤ r ≤N/2, although the theoretical details are not so constrained. Minimum-weight
r-factors may be computed as follows: For any subgraph of G , let xij be an indicator
variable equal to 1 if the edge connecting vertices i and j is included in the subgraph
and let dijbe the distance between vertex i and vertex j. Then the edges of G!

r solve fol-
lowing the combinatorial optimization problem:

minx
XN

j¼2

Xj−1

i¼1

dijxij

subject to
Xk−1

i¼1

xik þ
XN

j¼kþ1

xkj¼ r ∀k∈ 1;…;Nf g

xij∈ 0; 1f g ∀j∈ iþ 1;…;Nf g; ∀i∈ 1;…;N−1f g:

ð2Þ

Anderson (1972) assures the existence of a solution for r ≤N/2. Solutions for r >N/2 are
guaranteed by the fact that the complement of an r-regular subgraph of G is an
(N − 1 − r) -regular graph. For this paper, solutions are found in R using the package
� lpSolve” for N ≤ 400. For N > 400, solutions are found in R using the package � gurobi”
due to the computational complexity of larger problems.
Similar to the cross-match test, we count the number of edges Ar in G!

r that include a
vertex from each group. We call Tr = Ar/r the mean cross-count (MCC) statistic. The
idea here is that the number of within-group edges in G!

r will be higher for cases of a
distribution difference than for the null case. So, small values of Tr are evidence against

Figure 1 Bivariate data for illustrating example with optimal non-bipartite matching on groups 1
(○) and 2 (△) with m = n = 10. Cross-group pairs are connected by solid lines; within-group pairs by
dotted lines.

Ruth Journal of Statistical Distributions and Applications 2014, 1:22 Page 4 of 12
http://www.jsdajournal.com/content/1/1/22

Illustration of cross matching for a 
bivariate case with n = m = 10. 
(Ruth, 2014)
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Cross-Match Test

• Null distribution of T-statistic:

– i.e. when both samples belong to the same population

– where a1 is the no. of pairs with one control and one perturbed vector

– Based on simple combinatorial arguments, thus exact
• Analogous to the probability of drawing one red and one green

ball

P (T = a1) =
2a1(N/2)!�N

n

�
(n�a1

2 )! a1! (
m�a1

2 )!
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Single Long Runs: Scalability
• To enhance throughput, use more cores:

– 5 simulated years per day (required)

• But, scaling (weak or strong) is not perfect:

– Less work per core with large core counts

– Increase in MPI communications

– Smaller MPI messages

– Large MPI latency

• MPI cost: 90% 

Courtesy: Mark Taylor, AMWG meeting 
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Climate State Approach
• Several years of a control run

– scientifically validated on a 
trusted machine

• Several years of the perturbed 
run

• Expert opinion from a subjective 
evaluation of plots, tables, etc.

• Expensive, slow and subjective, 
no quantitative standardized 
metric or cost function analysis. 

• Need for tests for the multivariate 
problem of climate model 
verification.
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Test Case: Optimization Choices

Aggressive compiler choices (SISE-FAST) with the PGI compiler on Titan can 
result in climate-changing simulations.

• Model: DOE E3SM v0.4
• Configuration: F1850C5
• Spatial Resolution: 208km at the equator (2 degrees), 30 vertical layers
• Machine Configuration: PGI compiler on Titan

Exploring an Ensemble-Based Approach to Atmospheric Climate Modeling and Testing at Scale

Salil Mahajan↵ (mahajans@ornl.gov), Abigail L. Gaddis↵, Katherine J. Evans↵ and Mathew R. Norman↵

↵Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN

1. Introduction

We evaluate the utility of short independent simulation ensembles (SISEs) for characterizing a cli-
mate model’s intrinsic variability for verification tests and scientific analyses on HPC environments:
• Traditional climate model verification as well as scientific applications rely largely on several single
long runs (SLRs) - problematic for high resolution configurations due to long throughput times.

• Running a SISE is economical as compared to a SLR. For example, running 100 independent
one-year-long ensembles instead of a single 100-year run, on the same number of nodes, pro-
duces a 100x greater workload per node and, therefore, significantly reduced relative MPI and
PCI-e overheads (i.e., better parallel scaling).

• Verification Testing: We design a new SISE-based testing framework for climate reproducibility -
a decision making tool to check if non-bit for bit changes are climate changing.

• We apply the testing framework on SISE with different compiler optimizations.
• We also evaluate if SISE can replace SLRs for generating stationary noise statistics (natural
variability) of the system using this testing framework.

2. Model Experiments

• Model: DOE Accelerated Climate Model for Energy (ACME) v0
• Configuration: Active atmosphere & land, prescribed cyclical 1850 SSTs and sea-ice distribution
• Spatial Resolution: 208km at the equator (2o), 30 vertical layers
• Machine Configuration: PGI compiler on Titan
• Ensembles: Machine-precision level random perturbations to the initial 3-D temperature field

Table 1: List of experiments. Failures of several members, as expected using a multi-petascale

computer, create slightly different ensemble sizes for SISEs job submissions.

Name Description Ens. Size

SLR Long control simulation (100 years, -O2 optimization) 1
SISE-DEFAULT Short 1-yr simulation ensemble with default (-O2) optimization 65
SISE-O1 Short 1-yr simulation ensemble with -O1 optimization 59
SISE-FAST Short 1-yr simulation ensemble with -fast optimization 62
SISE-LND-INIT Short simulation ensemble with land initialized with states from

70 different years of the SLR
70

3. Testing Methodology

3.1 Equality of Distributions

• Null Hypothesis (H0): Two simulation ensembles (SISE) represent the same climate state.
• Use global annual means of all standard model output variables (158 variables).
• Test the null hypothesis of equality of distributions for global annual means of each variable in-
dependently (H0) based on the non-parametric Kolmogorov-Smirnov (KS) test between the two
SISEs.

• Test statistic (t): No. of variables that reject H0 at a given confidence level (say 95%).
• H0 is rejected if t > ↵, where ↵ is some critical number (threshold).
• The critical number (↵) for a certain confidence level (95%) is obtained from an empirically de-
rived approximate null distribution of t using resampling techniques.

3.2 Climate Extremes

• Distance based equality of distribution tests like the KS-test not robust for distributions with dif-
ferent tails because the cumulative distribution functions converge at the tails.

• We evaluate extremes separately using the generalized extreme value (GEV) theory, which pos-
tulates that, asymptotically, the normalized maxima (z) of a process can be represented by:

G(z) = exp

⇢
�[1 + ⇠(

z � µ

�
)]�1/⇠

�
(1)

where µ, � and ⇠ represent the location, scale and shape parameter.
• Presently, we evaluate the location parameter of the GEV model for annual maxima of daily av-
erage surface temperature and precipitation rate separately.

• Null Hypothesis (G0): Simulation of extremes of a variable between two SISE is statistically in-
distinguishable.

• Annual maxima for each grid point are fit to a GEV distribution.
• Test the null hypothesis that the simulation of extremes of a variable between two simulation
ensembles is statistically indistinguishable (G0) at the 95% level at each grid point.

• Test statistic (g): No. of grid points that reject G0

• G0 is rejected if t > �, where � is some critical number, obtained using resampling techniques.

4. Test Results: Optimization Choices

4.1 Equality of Distributions

Table 2: KS-test Results. The test statistic (t) is the number (%) of variables that reject H0 based

on the KS-test. H0 is accepted if t < ↵.

Comparison Test Statistic (t) Critical Value (↵) H0 Test

SISE-DEFAULT vs. SISE-O1 1 (0.6%) 17 Accept H0

SISE-DEFAULT vs. SISE-FAST 24 (15.2%) 14 Reject H0

SISE-O1 vs. SISE-FAST 23 (14.6%) 16 Reject H0

• Monte Carlo Permutations: Simulations from the two ensembles of size n and m are pooled to-
gether and the simulations from the pool are then randomly assigned to one of two groups of sizes
n and m. The t-statistic is then computed for the random drawing. If all possible such random
drawings are made, the null distribution of t is exact. Here, we only conduct 500 re-samplings for
all cases, which yields an approximate null distribution. The critical values listed in Table 2 are for
95% confidence level, i.e. 95% of the 500 resamples have < ↵ variables rejecting H0.

• SISE-DEFAULT (with -O2) and SISE-O1 simulations represent the same climate state.
• Aggressive compiler choices (SISE-FAST) with the PGI compiler on Titan can result in climate-
changing simulations.

4.2 Climate Extremes

a.

b.

c.

d.

Location	Parameter,	Surface	Temperature(K) Location	Parameter,	Precipitation	Rate	(mm/day)

Surface	Temperature	Extremes:	Default	 Precipitation	Extremes:	Default	

Diff.	in	Location	Parameter,	Surface	Temperature(K) Diff.	in	Location	Parameter,	Precipitation	Rate	(mm/day)

Default	– O1	 Default	– O1	

Figure 1: Climate Extremes. Location parameter of (a) surface temperature (K) over land areas

and (b) precipitation rate (mm/day) for the default short simulation ensemble. Difference in location

parameter between SISE-DEFAULT and SISE-O1 experiments for (c) surface temperature and (d)

precipitation rate. Colored areas represent grid points where the extremes are statistically distin-

guishable at the 95% confidence level.

Table 3: Climate extremes test results. The test statistic (g) is the percentage of variables that reject

G0 based on the Student’s t-test. G0 is accepted if t < ↵.

Comparison Variable Test statistic (g) Critical value (�) G0 Test

SISE-DEFAULT vs.
SISE-O1

Precipitation Rate 5.1% 6.5% Accept G0

Surface Temperature 5.0% 9.6% Accept G0

SISE-DEFAULT vs.
SISE-FAST

Precipitation Rate 4.7% 6.3% Accept G0

Surface Temperature 3.6% 9.6 % Accept G0

SISE-O1 vs. SISE-
FAST

Precipitation Rate 5.2% 6.5% Accept G0

Surface Temperature 10.3% 9.8% Reject G0

• All SISE simulations are identical to each other in terms of their simulation of climate extremes.
• The result is in contrast to the result of the KS-testing framework.
• It suggests that either optimization choices do not effect climate extremes or that climate ex-
tremes are not a good metric to evaluate answer changes that might effect the simulation of the
climate, with 60 ensemble members.

5. Single Long Run (SLR) vs. Short Independent Simulation Ensemble (SISE)
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Figure 2: For each ensemble pair of the SISE simulations, the L1-norm of the absolute differences

for hourly 850mb temperature in Kelvin is plotted. The initial 10�14 K differences grow rapidly over

the first 23 days at which point they plateau at roughly 10�2 and become independent of each other.

Table 4: KS test results: SLR vs. SISE.

Comparison Test Statistic (t) Critical Value (↵) H0 Test Re-

sult

SLR vs. SISE-DEFAULT 80 (50.6 %) 15 Reject H0

SLR vs. SISE-LND-INIT 74 (48 %) 13 Reject H0

• The SLR simulation, broken into an ensemble of 1-yr segments, is clearly distinct from the SISE-
DEFAULT simulation ensemble based on the test.

• Individual simulations in the SISE become independent of each other in a few days (Fig. 2).
• However, it is known that free atmospheric internal variability also includes variability on longer
time-scales (Fig 3a).

• This low frequency variability in the SLR experiment will significantly influence the variability of the
ensemble derived from breaking the SLR simulation into one year segments. This is consistent
with the rejected null hypothesis for the derived SLR and SISE-default ensemble set.

1 10 1 10

Time Period (Years) Time Period (Years)

CTRL	Experiment:	Surface	Temp.	Spectrum SISE-DEFAULT	Experiment:	Surface	Temp.	Spectrum

a. b.

Figure 3: Climate variability. Normalized temporal variance spectrum (red: smoothed with a moving

window of 11) of monthly global-average surface temperature after the seasonal cycle is removed,

for (a) the SLR long simulation of 80 years and (b) SISE-DEFAULT one year simulation ensemble

(65 years) with the global averaged surface temperature time series joined together into one long

time series.

7. Summary and Discussion

• We investigate SISE as a potential framework for model verification and scientific analysis
• A new SISE-based testing framework is designed for climate reproducibility tests.
• Aggressive compiler optimizations can significantly change model climate statistics. Although,
climate extremes are not sensitive to these changes.

• Unforced low-frequency atmospheric intrinsic variability implies that SISE, initialized with atmo-
spheric states differing only at machine precision levels, do not capture the variability of a SLR.

Acknowledgements: The authors are grateful for support from the U.S. Department of Energy ACME and CMDV-Software projects. The extremes methodology was initiated through an ORNL Laboratory SEED level Laboratory Research and Development Grant. This research used resources of the OLCF, which is supported by the Office of Science of the DOE under Contract No. DE-AC05-00OR22725.
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Test Case: Model Verification Using Ensembles: 
Frozen model configuration v0 vs. v1

• Configuration: F1850C5 compset (frozen after v0 bug-fixes, v0.4)
• Spatial Resolution: 208km at the equator (2 degrees), 30 vertical layers

• Goal: Evaluate if efforts towards exascale computing impact climate reproducibility:
• New scientific features, code refactoring
• CIME (Common Infrastructure for Modeling the Earth System) update 
• Compiler and Software library updates

Name Ens. Size CIME PGI p-netcdf

v0.4-2015 30 4.0 15.3 1.5.0 

master 30 5.0 17.5 1.7.0 

v0.4 27 4.0 17.5 1.7.0 



4949 Open slide master to edit

Frozen model configuration v0 vs. v1

Comparison Test Statistic (t) Critical no. (α) H0 Test 

v0.4-2015 vs. master 6 (3.6%) 13 Accept H0 

v0.4 vs. master 8 (4.2%) 13 Accept H0 

v0.4-2015 vs. v0.4 5 (3%) 13 Accept H0 

Software infrastructure updates are not climate changing.
Frozen model configuration reproducible!


