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Introduction

Work overview

Applying parallel Schwarz algorithms with overlapping domain decom-
position to time evolution problems discretized in time by the exponential
time differencing methods.

Advantages
@ Using exponential integrator allows large time step sizes.

@ Solving subdomain problems of smaller sizes in parallel, possibly
with different time steps in different subdomains.

@ Reducing computational cost without affecting the accuracy of the
approximate solution.
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Localized ETD Algorithm Global ETD2

Global numerical solution

@ PDE models: parabolic or hyperbolic types such as shallow water equations
Spatial discretization:  u'(t) = Lu(t)+R(t,u(t),v(t)), 0<t< T, u(0)= uo.
Time integration: exponential time differencing

@ Given solution up, at t, and a time step At = tpp1 — .

A0 =o)L [R(tmi1) — R(8
umH:eA’Luer/O oA S)L{—( “)At (Un)s R (ty)| as (1)

=™t un + Aty (ALL) R (tn) + Atga(AtL) [R(tnet) — R(tn)]  (2).

e —1 p1(z) —1

e Denote R(t) = R(t, u(t), ¥ (t)); define p1(2) = and ¢5(2) =
z

@ Second-order accuracy in time, named ETD2.

It can be formulated as a two stage approach (see Konstantin’s slides).

@ High performance computing = localized ETD based on domain decomposition
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Localized ETD Algorithm Overlapping Domain Decomposition

Multidomain formulation

@ Partition Q into overlapping subdomains Q4 and Q.

Partition u into overlapping subsets uy and us.

Solve subdomain problems separately.
N
Transmission conditions on the interfaces:

al 3L Ed

Y — U1(Ng, t) = U2(Ng,o, t) and uz(1,t) = u1(Na, t),

where Noh = al, Ngh= 8L, Ng o = Ng — No + 1.
@ Recall a two-stage ETD2:

Uit = e um + Atp (AtL) R (tm, Um, 1, 12) ;
Uni1 = am+1 + At@g(AtL) [R(tm+17am+17w17w2) - R(tﬂ%un’hwthH .

@ Assume that subdomain solutions at time fn, U1,» and U, n, are obtained.
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Localized ETD Algorithm Iterative, localized ETD algorithm

Second-order localized ETD (LETD) algorithm

@ First compute subdomain solutions Uy, m41 and Uz, m1.
For instance, in Qq,

U mit = eAbuy i + Aty (ALLY) Ry (tm, Uy, m, 1 (tn), Uz (N5 ) -

@ Setu’)  (Na) =1 mi1(Na) and ul)  (Ns.a) = 2, ms1(Np.a)-

(k+1)
1,m+1

(k+1)

and Uy mi1

@ Start the iteration: for k = 0,1,--- , compute u
For instance, in Qq,
k+1 ~ ~ k
Ug;,ﬁ = Uy i1 + Atpp(AtLy) - {Fh (fm+17U1,m+171/11(fm+1),U(Z}HM(NB,U))
—Ry (fm,U1,m,¢1(fm)7U2,m(N3.a))]~

@ Stop if interface values from subdomain solutions are close enough.
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Model problem Shallow water equations

Model problem

Rotating Shallow water equation (SWE)

Oth+V - (hu) =0, in Q x (0, T),
2
afu+(f+w)kxu+v(%+g(h+b)) =0,inQx(0,T),

@ hthe fluid thickness, u the velocity field, w = k - (V x u) the relative vorticity, k is
the surface normal vector, g the acceleration of gravity, b the bottom topography
and f the Coriolis parameter.

@ Application of TRiSK scheme leads: U’ = F(U,v) (see Lili's slides).

- Approach I: F =JnU + Rp,
where Jp, the Jacobian of F at U(tm) and Rm = F(U) — JmU the remainder.

- Approach ll: F = AU + R, using Hamiltonian view  (see Konstantin’s slides).

@ Application of LETD2 (Approach | — LETD2; Approach Il — LETD2-wave).
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Model problem Numerical results

Gaussian pulse test case

@ SOMA test case inspired geometry (Ocean basin) with no forcing or smoothing.

@ Primal SCVT mesh consists of 8521 cells, 25898 edges, and 17378 vertices.

@ Gaussian initial condition:
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@ No normal flow boundary conditionu-n =10
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Model problem Numerical results

Performance of LETD2

@ 10 subdomains with nearly equal parts generated by METIS.
Overlapping 6 cells, and At = 200 s.
@ Relative L, errorin h, using RK4 with At =1 s as benchmark.
Average CPU time per step (CPU time per processor is shown for localized algorithms).

Methods # Krylov vectgrs=20 # Krylov vector§=30
error time error time

ETD2 8.2e-8 239¢e—01s | 8.2e-8[h] 3.15e—01s

LETD2 8.2e-8 512e—-02s | 8.2e-8[h] 7.01e—02s

ETD2-wave 6.0e-9 5.84e—02s | 6.0e-9[h] 8.00e—02s
LETD2-wave | 6.0e-9 1.73e—02s | 6.0e-9[h] 2.10e—02s

@ No iteration needed for LETD2 or LETD2-wave.

Localized schemes achieve the same accuracy as the associated global
schemes, while accelerating the simulations; ETD-wave models are
computationally more efficient than ETD models.
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Model problem Numerical results

@ 10 subdomains, 30 Krylov vectors.

@ Relative L errorin h and u, using RK4 with At = 1 s as benchmark.
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Model problem Numerical results

@ 10-day simulation using LETD2-wave

10 subdomains, 30 Krylov vectors, and At = 200 s when overlapping 8 cells.
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@ Mass conservation up to machine precision.
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Conclusion

Conclusion

Summary

@ Localized ETD algorithms with overlapping subdomains.
Reach the same accuracy as global schemes.

Speed up simulations through parallel performance.

Next steps

@ Convergence analysis for Localized ETD applied to SWEs.

Extensions to multi-layer SWEs, and more complicated systems.
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