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Introduction

Work overview

Idea
Applying parallel Schwarz algorithms with overlapping domain decom-
position to time evolution problems discretized in time by the exponential
time differencing methods.

Advantages
Using exponential integrator allows large time step sizes.

Solving subdomain problems of smaller sizes in parallel, possibly
with different time steps in different subdomains.

Reducing computational cost without affecting the accuracy of the
approximate solution.
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Localized ETD Algorithm Global ETD2

Global numerical solution

PDE models: parabolic or hyperbolic types such as shallow water equations

Spatial discretization: uuu′(t) = LLLuuu(t)+RRR(t ,uuu(t),ψ(t)), 0 < t < T , uuu(0) = uuu0.

Time integration: exponential time differencing

Given solution uuum at tm and a time step ∆t = tm+1 − tm.

uuum+1 = e∆t LLLuuum +

∫ ∆t

0
e(∆t−s) LLL

[
RRR (tm+1)−RRR (tm)

∆t
s + RRR (tm)

]
ds (1)

= e∆t LLLuuum + ∆tϕ1(∆t LLL)RRR (tm) + ∆tϕ2(∆t LLL) [RRR(tm+1)−RRR(tm)] (2).

• Denote RRR(t) ≡ RRR(t,uuu(t),ψ(t)); define ϕ1(z) =
ez − 1

z
and ϕ2(z) =

ϕ1(z)− 1

z
.

Second-order accuracy in time, named ETD2.

It can be formulated as a two stage approach (see Konstantin’s slides).

High performance computing⇒ localized ETD based on domain decomposition
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Localized ETD Algorithm Overlapping Domain Decomposition

Multidomain formulation

Partition Ω into overlapping subdomains Ω1 and Ω2.

Partition uuu into overlapping subsets uuu1 and uuu2.

Solve subdomain problems separately.

Transmission conditions on the interfaces:

uuu1(Nβ , t) = uuu2(Nβ,α, t) and uuu2(1, t) = uuu1(Nα, t),

where Nαh = αL, Nβh = βL, Nβ,α = Nβ − Nα + 1.

Recall a two-stage ETD2:

ũuum+1 = e∆t LLLuuum + ∆tϕ1(∆t LLL)RRR (tm,uuum, ψ1, ψ2) ;

uuum+1 = ũuum+1 + ∆tϕ2(∆t LLL)
[
RRR(tm+1, ũuum+1, ψ1, ψ2)−RRR(tm,uuum, ψ1, ψ2)

]
.

Assume that subdomain solutions at time tm, uuu1,m and uuu2,m, are obtained.
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Localized ETD Algorithm Iterative, localized ETD algorithm

Second-order localized ETD (LETD) algorithm

First compute subdomain solutions ũuu1,m+1 and ũuu2,m+1.

For instance, in Ω1,

ũuu1,m+1 = e∆t LLL1uuu1,m + ∆tϕ1(∆t LLL1)RRR1
(
tm,uuu1,m, ψ1(tm),uuu2,m(Nβ,α)

)
.

Set uuu(0)
1,m+1(Nα) = ũuu1,m+1(Nα) and uuu(0)

2,m+1(Nβ,α) = ũuu2,m+1(Nβ,α).

Start the iteration: for k = 0, 1, · · · , compute uuu(k+1)
1,m+1 and uuu(k+1)

2,m+1.

For instance, in Ω1,

uuu(k+1)
1,m+1 = ũuu1,m+1 + ∆tϕ2(∆t LLL1) ·

[
RRR1

(
tm+1, ũuu1,m+1, ψ1(tm+1),uuu(k)

2,m+1(Nβ,α)
)

−RRR1
(
tm,uuu1,m, ψ1(tm),uuu2,m(Nβ,α)

) ]
.

Stop if interface values from subdomain solutions are close enough.
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Model problem Shallow water equations

Model problem

Rotating Shallow water equation (SWE)
∂th +∇ · (huuu) = 0, in Ω× (0,T ),

∂tuuu + (f + ω)kkk × uuu +∇
(
|uuu|2

2
+ g(h + b)

)
= 000, in Ω× (0,T ),

h the fluid thickness, uuu the velocity field, ω = kkk · (∇× uuu) the relative vorticity, kkk is
the surface normal vector, g the acceleration of gravity, b the bottom topography
and f the Coriolis parameter.

Application of TRiSK scheme leads: UUU ′ = FFF (UUU,ψ) (see Lili’s slides).

- Approach I: FFF = JJJmUUU + RRRm,

where JJJm the Jacobian of FFF at UUU(tm) and RRRm = FFF (UUU)− JJJmUUU the remainder.

- Approach II: FFF = AAArefUUU + RRRref , using Hamiltonian view (see Konstantin’s slides).

Application of LETD2 (Approach I→ LETD2; Approach II→ LETD2-wave).
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Model problem Numerical results

Gaussian pulse test case

SOMA test case inspired geometry (Ocean basin) with no forcing or smoothing.

Primal SCVT mesh consists of 8521 cells, 25898 edges, and 17378 vertices.

Gaussian initial condition:

Sea surface height Velocity field

No normal flow boundary condition uuu · nnn = 0
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Model problem Numerical results

Performance of LETD2

10 subdomains with nearly equal parts generated by METIS.

Overlapping 6 cells, and ∆t = 200 s.

Relative L∞ error in h, using RK4 with ∆t = 1 s as benchmark.

Average CPU time per step (CPU time per processor is shown for localized algorithms).

Methods # Krylov vectors=20 # Krylov vectors=30
error time error time

ETD2 8.2e-8 2.39e − 01 s 8.2e-8 [h] 3.15e − 01 s
LETD2 8.2e-8 5.12e − 02 s 8.2e-8 [h] 7.01e − 02 s
ETD2-wave 6.0e-9 5.84e − 02 s 6.0e-9 [h] 8.00e − 02 s
LETD2-wave 6.0e-9 1.73e − 02 s 6.0e-9 [h] 2.10e − 02 s

No iteration needed for LETD2 or LETD2-wave.

Localized schemes achieve the same accuracy as the associated global
schemes, while accelerating the simulations; ETD-wave models are
computationally more efficient than ETD models.
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Model problem Numerical results

10 subdomains, 30 Krylov vectors.

Relative L∞ error in h and uuu, using RK4 with ∆t = 1 s as benchmark.
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Model problem Numerical results

10-day simulation using LETD2-wave

10 subdomains, 30 Krylov vectors, and ∆t = 200 s when overlapping 8 cells.

Mass conservation up to machine precision.
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Conclusion

Conclusion

Summary
Localized ETD algorithms with overlapping subdomains.

Reach the same accuracy as global schemes.

Speed up simulations through parallel performance.

Next steps
Convergence analysis for Localized ETD applied to SWEs.

Extensions to multi-layer SWEs, and more complicated systems.
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