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CUSP Mesh

Coastal United States ‘Plus’

Build on EC60to30 background mesh
8 km coastal resolution

400 km wide resolution region

600 km transition region

Final CUSP8 Design

CUSP8

North Atlantic (NAS8)



Study Overview
» Study 1: Degraded Mesh

— What is the effect of mesh quality on simulations?
— Intentionally degraded cells on an EC60to30 mesh

« Study 2: Transition Width

— How wide does the transition region between the high resolution
region and the low resolution background mesh need to be?

— Changed the transition width of the CUSP8 mesh from 10 km to
900 km

« Study 3: Coastal Resolution

— Does improving the coastal resolution improve the dynamics of the
Gulf Stream?

— Changed the coastal resolution of the CUSP mesh from 8 km to
30 km



Study 1: Degraded Mesh
Two measures of mesh quality

1) Ratio of smallest to largest side of cell
EC60t030-v1 EC60t030 Degraded 0.25 Degraded 0.50 Degraded 0.75

Cell quality

2) Maximum percent change in cell area between adjacent cells
EC60t030 EC60to30-degraded-0.75

EC60to30-E3SM-V1



Study 1:
Degraded Mesh

Degraded meshes perform
very similarly to the standard

EC60to30 mesh

Degraded meshes have slightly
higher SSH RMS and EKE

0.50 and 0.75 degraded
meshes had to be run at

smaller timesteps

SSH Average SSH Snapshot

KE Snapshot SSH RMS

KE Average

EKE

Standard Degraded 0.25 Degraded 0.50 Degraded 0.75
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Study 3:

Coastal Resolution

Simulated Years Per Wall Clock Day
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Improved dynamics with

higher coastal resolution

CUSP8 performs similarly to
the North Atlantic mesh
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Conclusion

e Variable resolution JIGSAW meshes
are robust

* Cell quality does not appear to be a
major source of error

* Care should be taken with placement of transition region
— Can affect eddy formation and propagation

* (Can variable resolution fix your problem?
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Overview

e Testing new coastal-refined variable resolution mesh
* One goal: Hoping to improve Gulf Stream path and strength

Low-resolution Coastal-refined High-resolution

Cell width (km)




Overview

e Testing new coastal-refined variable resolution mesh
* One goal: Hoping to improve Gulf Stream path and strength

Low-resolution Coastal-refined High-resolution

Cell width (km)

e Showed some improvements (e.g. EKE)
but did not fix Gulf Stream bias

* This motivated development of a new
coastal-refined mesh which shows

promising preliminary results




Note: A key difference from Kristen’s work

>> Here I’m using realistic atmospheric forcing (CORE v2)

Looking for good agreement with observations and with high-res
results from Petersen et al. (2019)



Intro/Motivation

. Why do we want higher resolution models?
. What’s stopping us from running higher resolution models? And
what are some solutions?

. Ways to design an unstructured mesh



1. Why do we want higher resolution models?

Gulf Stream surface relative vorticity - 1.5 kmm ROMS simulation.

source: Jonathan Gula, Université de Bretagne Occidentale
http://stockage.univ-brest.fr/~gula/movies.html




2. What's stopping us from running higher resolution models?

momentum equation:
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hydrostatic condition:
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A

equation of state:

P = fm.g(e-. =, P)

Primitive Equations (incompressible hydrostatic Boussinesq)
MPAS-Ocean Model User's Guide 2.0 (2013)

Chessboard graphic:
http://mathworld.wolfram.com/Chessboard.html




2. What’s stopping us from running higher resolution models?

Low-resolution ocean 4x higher resolution

16x more cells , 4x smaller timestep ->| 64x higher computational cost

>> A low-resolution simulation that runs in a day now takes 2 months to run



2. What’s stopping us from running higher resolution models?

Table 1. Setup and performance

Low-resolution - High-resolution
Mesh name EC60t030 RRS18to6
Horizontal Grid Cells (ocean) 235k 3.69 mil
Cell Size: min—max 30-60 km 6—18 km
Vertical Layers 60 80
Time step 30 min 6 min
Simulated years per day 13.18 0.77
Total cores (ocean + sea ice + coupler) 960 3600
Million CPU hours per century a—— &
Cost vs. low-resolution

| %1.0 % 65.9

“compy mcnodeface
*blues



2. What’s stopping us from running higher resolution models?

Regional resolution
~ refinement




2. What’s stopping us from running higher resolution models?

Table 1. Setup and performance
Low-resolution Coastal-refined High-resolution

Mesh name EC60to30 CUSPY RRS18to6
Horizontal Grid Cells (ocean) 235k 645k 3.69 mil
Cell Size: min max 30-60 km 8-60 km 6—18 km
Vertical Layers 60 60 80
Time step 30 min 10 min 6 min
Simulated years per day 13.18 4.55 0.77
Total cores (ocean + sea ice + coupler) 960 2160 3600
Million CPU hours per century & PN &
Cost vs. low-resolution x1.0 X 6.5 X 65.9
“compy mcnodeface e

’blues



. Ways to design an unstructured mesh

MPAS mesh specification _ FESOM-HR

60"

50+

. —— EC60t030

304 = RRS518to6

cell width, km

201
10 -A

latitude

MPAS-Ocean standard meshes Scaled by observed SSH variability
Sein et al. (2016)

FESOM-XR

Scaled by Rossby Radius 60 km global, 15 km Southern Ocean
Sein et al. (2017) Rosa et al. (2018) AGU Poster



3. Ways to design an unstructured mesh

Low-resolution Coastal-refined

= . N
)

Cost: x1 X7

High-resolution

X66

Cell width (km)



Results part 1: California Upwelling

Motivation:

=:,‘P‘*" wcm?d') mean SeaWiFS chlorophyll concentration
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Results part 1: California Upwelling

Low-resolutlon Coastal reflned ngh resolutlon
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Results part 1: California Upwelling

Low-resolution Coastal reflned ngh resolutlon
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Results part 1: California Upwelling

Wavenumber power spectral analysis:
Quantifying what we saw by eye

SST

High-resolution

|_ow-resolution

—— e ——y

Coastal-refined

10_ 1 1 1 1 | 1 1 1 1 1
1000 500 250 100 50 25 10 107 1000 500 250 100 50 25
Wavelength (km) Wavelength (km)



Results part 2: Western boundary current

Motivations:

* Path: Low-resolution MPAS-O (and many
other climate models) has unrealistic Gulf
Stream (GS) path.

>> Large SST bias in western North
Atlantic

Florida-Bahamas Transport
Petersen et al. (2019)

EC60to30 RRS18to6 | Observations

17.6 Sv 30.1 Sv 31.5 Sv

SST bias: Low-res model - Observations
Petersen et al. (2019)

* Transport: Low-res GS transport is much
weaker than high-res and observations.



Results part 2: Western boundary current

Low-resolution  Coastal-refined High-resolution
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Results part 2: Western boundary current

Low-resolution  Coastal-refined High-resolution
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Results part 2: Western boundary current
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Surface speed RMS (m/s)
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Results part 2: Western boundary current
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Results part 2: Western boundary current
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Results part 2: Western boundary current
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Results part 2: Western boundary current
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1. Deep Western Boundary Current

\‘—__/

Fig. 6. Circulation pattern in meridionally
bounded ocean with concentrated source S,
at North Pole and a unifom;l‘y distributed

Stommel and Arons (1959a)

Deep Western
Boundary Current

(Jack Cook, WHOI Graphics Services)

(Eric S. Taylor, WHOI Graphics Services. Base map from NOAA)



2. Wind-driven Gyre

THE WESTWARD INTENSIFICATION OF WIND-DRIVEN OCEAN CURRENTS

Henry Stommel

(Contribution No. 408, Woods Hole Oceanographic Instiution)

Wind
Stress

Stewart (2008) Fig 11.5 recreation of Stommel (1948) Fig. 4+5
https://www.colorado.edu/oclab/sites/default/files/attached-files/stewart textbook.pdf




’/
Deep Western Boundary Current Sub-tropical Gyre
Southward transport Southward transport

Bouyancy-driven Wind-driven




Results part 2: Western boundary current
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Results part 2: Western boundary current
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Results part 2: Western boundary current
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Results part 2: Western boundary current
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Results part 2: Western boundary current
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Results part 2: Western boundary current

Gulf Stream path influenced by resolution?
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Results part 2: Western boundary current

Gulf Stream path influenced by resolution?
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Results part 2: Western boundary current

MERCINA Working Group (2012)
Tail of the Grand Banks:

key “pinch point”



GS / Labrador Current interactions: Salinity at 250 m

GOOD

High-resolution G case
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GS / Labrador Current interactions: Salinity at 250 m

GOOD BAD

Coastally-refined G case

High-resolution G case rar . \‘j
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Ongoing work

Extending refinement around Gulf Stream Extension
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Ongoing work o
Preliminary results: Improved path of

Gulf Stream Extension




Ongoing work

Why is the Gulf Stream path being
affected by the mesh resolution transition?
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60 km resolution.
High viscosity
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Thank you




Extra slides
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Danilov and Wang (2015)



High-resolution
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Low-resolution
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Time (years)

Low-resolution Coastal-refined High-resolution
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Low-resolution G case

Tail of the Grand Banks

Coastally-refined G case
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Trangactions, American Geophysical Union Volume 28, Number 2 April 1948

THE WESTWARD INTENSIFICATION OF WIND-DRIVEN OCEAN CURRENTS
Henry Stommel

(Contribution No. 408, Woods Hole Oceanographic Instiution)
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Stewart (2008) Fig 11.5 recreation of Stommel (1948) Fig. 4+5
https://www.colorado.edu/oclab/sites/default/files/attached-files/stewart textbook.pdf




1. Why do we want higher resolution models?

Low resolutlon H|gh resolutlon
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