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Reduced Order Modeling (ROM)

Data driven, physically contained model.

High �delity for sparse set of parameters, �ll in gaps with ROM.

Inexpensive simulations, stable over long time spans
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Rotating Shallow Water Equations (RSWE) on a Sphere

Consist of depth integrated Navier-Stokes and mass conservation

Variables: �uid thickness h and velocity ~u. Domain Ω ⊂ S2

∂h

∂t
= −∇ · (h~u) in Ω,

∂~u

∂t
= −qh(k̂ × ~u)− g∇(h + b)−∇K + F(h, ~u) in Ω ,

~u · n = 0 on Γ ,

Kinetic energy: K = |~u|2/2
Potential vorticity: q(h, ~u) = (k̂ · ∇× ~u + f )/h

Forcing: F(h, ~u) - wind, drag, di�usion,...

Gravitational acceleration g , coriolis force parameter f , bottom topography b, unit vector in
z direction k̂

Mimetic TRiSK scheme is used in space discretization
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Hamiltonian Framework

Di�erential operator J(y), y = (h, ~u)>

J(y) =

(
0 −∇·
−∇ qk̂×

)
.

Multilayer Hamiltonian (bottom topography b)

H(y) =
1

2

L∑
l=1

∫
Ω
gh(h + 2b) + h(~u>~u) dΩ,

Energy conservation at abstract level

Symmetry of D = δ2H and skew-symmetry of J

RSWE are:

yt = J(y)δH(y) + F(y)
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Proper Orthogonal Decomposition (POD)

Consider set of snapshots in matrix Y . Shifted and scaled for mass conservation

Y = (y1, y2, · · · , ym)

Essentially derives empirical orthogonal functions

Energy inner product: ||y ||2D = yTDy . D = δ2H(yref)

Solve eigenvalue problem / SVD for most dominant r modes

Y>DY = VΛ↔ D1/2Y = UΣV>

The reduced basis Φ=D−1/2U; Adjoint: → Φ∗ = Φ>D, Projection:ΦΦ∗
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Hamiltonian Structure Preserving Reduced Order Modeling (HSP-ROM)

Consider the model : yt = J(y)δH(y) + F(y)

Typical Reduced system is not Hamiltonian→ Stability issues.

Idea: Build reduced order model that preserves Hamiltonian ( Peng (2016) et. al, Wang et.
al (2017), Hesthaven et al. (2017))

Assumptions: y ≈ Φa and δH[Φa] ≈ ΦΦ∗δH[Φa]

reduced model is now Hamiltonian,

at = Φ∗J[Φa]DΦΦ∗D−1δH(Φa) + Φ∗F(Φa)

= J̄[a] ¯δH[a] + Φ∗F(Φa)
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Results: Energy Conservation and Stability

Quasi geostrophic initial condition: 5 days, No forcing; SOMA inspired geometry

15 basis functions: 99.98% of the sum of the eigenvalues
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Figure: Energy from ROM and HSP-ROM
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ROM's Feasibility For Ocean Modeling?

Represented by small basis? 4
year SOMA test

Best approximation with 20
functions ( Projection into
EOFs)

Figure: Singular value spectrum

Figure: full mode velocity (left), Projection into 20 basis functions (right)
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Single-layer Forced Test Case

1 year SOMA inspired test case

Wind forcing, drag, and biharmonic smoothing

Ten year spinup initial condition

Runge-Kutta-4. Larger time steps with ROM.

Method POD Modes ∆t/∆tmax,RK4 SYPD Errort�nal

Full � 0.75 2.09 �
HSP-ROM 15 75 5743 2.85e-1
HSP-ROM 25 75 3206 5.59e-2
HSP-ROM 40 75 1026 1.15e-2
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Results: h and u for 40 functions and ∆t/∆tmax ,RK4 = 75

Figure: u bottom for full model (top-left) and HSP-ROM with 15 (top-right), 25 (bottom-left), and 45
(bottom-right) basis functions. 10 / 11



Conclusions and Future Research

Conclusions

Stability and mass conservation achieved

Signi�cant speed ups

Su�cient Accuracy

Future research

Multilayer model (Primitive Equations)

Predictions with basis spanning parameter set

Applications: UQ, DA, Spinup
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